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Abstract 
 

This report introduces virtual reality (VR) technologies and identifies the challenges artists and 

the cultural heritage sector face in achieving the long-term preservation of artworks which 

make use of them. It was produced as part of Tate’s Preserving Immersive Media Project, an 

ongoing research project developing strategies for the preservation of artworks which utilise 

immersive media such as 360 video, real-time 3D, virtual, augmented and mixed reality. This 

report is intended to inform those interested in the preservation of VR artworks, particularly 

time-based media conservators, as to the components they are likely to receive when 

acquiring VR artworks, their characteristics and dependencies, and their vulnerability in terms 

of long-term preservation. The report concludes with recommendations for artists and 

institutions who are dealing with the immediate problem of caring from VR artworks, and with 

recommendations for further research. 

 

  

https://creativecommons.org/licenses/by-sa/4.0/


 

2 

Acknowledgements 
 

This research was supported by Tate’s Conservation Department. Thanks to Louise Lawson 

for project management and to Deborah Potter for editing suggestions.  

 

This research was also supported in part by Lumen Art Projects Ltd. Thanks to Carla Rapoport 

and Jack Addis for their project support and network introductions.  

 

Thank you to the artists we interviewed during this research for their insight into their working 

practice: Lawrence Lek, Michael Takeo Magruder, Winslow Porter, Jakob Kudsk Steensen, 

James Stringer, Milica Zec. Thanks to Judy Willcocks and Dom Biddulph for instigating a case 

study from the Museum & Study Collection at Central Saint Martins, UAL.  

 

Thank you to Dragan Espenschied and Claudia Roeck, with whom we organised the iPRES 

2019 VR hackathon in Amsterdam, and to all those who participated in the event. 

 

Thank you to the members of the Preserving Immersive Media Group1 for their insight and 

feedback on our work during the course of this project, particularly those who participated in 

our first meeting in 2019: Edward Anderson, Rasa Bočytė, Nelson Crespo, Savannah 

Campbell, Phillipa Day, David Edge, Patricia Falcão, Mark Hellar, Stephen McConnachie, 

Claudia Roeck. Thanks also to Brandon Butler for his clarifications regarding fair use and 

copyright in the US on an early draft. 

 

  

 
1 The Preserving Immersive Media Group (PIMG) is a mailing list and meeting series established by 

the Preserving Immersive Media Project, based on Group.io: https://groups.io/g/pimg/  

https://groups.io/g/pimg/


 

3 

Contents 
 

Abstract 1 

Acknowledgements 2 

Contents 3 

1. Introduction 5 

2. VR Systems 8 

2.1. VR System Hardware 8 

2.1.1. Head-Mounted Displays 9 

2.1.2. Tracking Systems 10 

2.1.3. Controllers 11 

2.1.4. Computers 12 

2.2. VR System Software 13 

2.2.1. VR Runtimes 15 

2.2.2. Operating Systems 18 

2.2.3. 3D APIs 18 

2.2.4. VR Device Drivers 20 

2.2.5. GPU Drivers 20 

3. Real-Time 3D VR 21 

3.1. Real-Time 3D VR Production Materials 21 

3.1.1. Engines and Project Files 21 

3.1.2. Scenes and Assets 24 

3.2. Real-Time 3D VR Applications 27 

3.2.1. Application Packages 27 

3.2.2. Executing an Application 28 

3.3. Real-Time 3D VR Documentation 30 

3.3.1. Acquisition Information Template 30 

3.3.2. User-Perspective Video Capture 31 

4. 360 Video 33 

4.1. 360 Video Production Materials 33 

4.1.1. Camera Capture 33 

4.1.2. Stitching 33 

4.1.3. Projection Format 34 

4.2. 360 Video Audio 36 

4.2.1. Order of Ambisonics 36 

4.2.2. Ambisonic Formats 37 



 

4 

4.2.3. Head-related Transfer Functions 37 

4.2.4. Format Conventions 37 

4.3. 360 Video File Types & Metadata 37 

4.3.1. Aspect Ratio and Resolution 37 

4.3.2. Frame Rates 38 

4.3.3. File Sizes 38 

4.3.4. Metadata 39 

4.4. 6DOF & Volumetric Video 39 

5. Suitability of Existing Preservation Strategies 41 

5.1. Acquiring VR Artworks 41 

5.1.1. Acquiring Real-Time 3D VR Artworks 41 

5.1.2. Acquiring 360 Video VR Artworks 43 

5.2. Hardware Stockpiling 44 

5.3. Hardware Migration 45 

5.4. Emulation and Related Approaches 46 

5.5. Code Migration and Related Approaches 48 

6. Summary and Recommendations 52 

6.1. Recommendations for Artists 54 

6.2. Recommendations for Collecting Institutions 55 

6.3. Recommendations for Further Work 56 

 

  



 

5 

1. Introduction 
 

Tate is a major arts institution that houses the United Kingdom’s national collection of British, 

international and contemporary art. Tate’s Conservation department works to ensure that this 

collection is appropriately cared for and remains displayable in the long-term. The Time-based 

Media Conservation team is concerned with the preservation of video, slide, film, audio, 

performance and, more recently, software-based artworks. As part of the department’s 

research programme, Tate keeps abreast of new technologies and their use in contemporary 

art, to ensure preparedness as the collection grows and diversifies. This has led to a new area 

of research exploring the preservation of artworks using immersive media. We use this 

umbrella term to describe various related technologies, including virtual reality (VR), 

augmented reality (AR) and mixed reality (MR) technologies, all of which have been designed 

to immerse a user in a virtual space or combine virtual and physical spaces. This report 

discusses a strand of the Preserving Immersive Media project2 which has focused on VR 

artworks. This report will henceforth use the term VR artworks to refer to works which use 360 

video or real-time 3D media and are designed to be viewed through a headset with some form 

of motion tracking. We note a rapid expansion in the use of related technologies and an 

evolving set of associated terminology, of which this report offers only a snapshot.  

 

Related research at Tate precedes this project. Firstly, over the past decade the Time-based 

Media Conservation teams have carried out extensive research on the conservation of 

software-based art3456, of which immersive media forms a subset. As part of Tate’s Software-

based Art Preservation Project7, this research has recently informed the development of new 

standardised workflows for new software-based artwork acquisitions. Recent acquisitions of 

artworks using real-time 3D technologies, which are closely associated with VR, have 

presented further opportunities to refine these. These have included John Gerrard’s Sow 

Farm, near Libbey, Oklahoma 2009 (2009), acquired in 2015, and Ian Cheng’s Something 

Thinking of You (2015), acquired in 2020. Research has also been carried out on the suitability 

of virtual reality (VR) technologies to document complex physical installations of time-based 

media artworks8. The insights, approaches and workflows developed in this body of research 

offer a starting point for developing a strategy for preserving VR artworks.  

 
2 More information about the Preserving Immersive Media project can be found on the Tate project 

webpage: https://www.tate.org.uk/about-us/projects/preserving-immersive-media  
3 Patricia Falcão, Developing a Risk Assessment Tool for the Conservation of Software-Based 

Artworks,MA thesis, Hochschule der Künste Bern, 2010. 
4 Pip Laurenson, ‘Old Media, New Media? Significant Difference and the Conservation of Software-

Based Art’, in Preserving and Exhibiting Media Art. Challenges and Perspectives, Amsterdam 
University Press, Amsterdam, 2013. 
5 Klaus Rechert, Patricia Falcão and Tom Ensom, Introduction to an Emulation-Based Preservation 

Strategy for Software-Based Artworks, 2016, http://www.tate.org.uk/research/publications/emulation-
based-preservation-strategy-for-software-based-artworks. 
6 Thomas Ensom, Technical Narratives: Analysis, Description and Representation in the Conservation 

of Software-Based Art, Ph.D thesis, King’s College London, 2019, 
https://kclpure.kcl.ac.uk/portal/en/theses/technical-narratives(e01bff94-08bd-4b83-aeef-
4e7d6d5b0dfc).html. 
7 Tate, Software-based Art Preservation – Project, 2021, https://www.tate.org.uk/about-

us/projects/software-based-art-preservation. 
8 Jack McConchie, VR tools as spatial documentation, presented at the American Institute for 

Conservation Annual Meeting 2018, Houston, Texas, May 31, 2018. 

https://www.tate.org.uk/about-us/projects/preserving-immersive-media
http://www.tate.org.uk/research/publications/emulation-based-preservation-strategy-for-software-based-artworks
http://www.tate.org.uk/research/publications/emulation-based-preservation-strategy-for-software-based-artworks
https://kclpure.kcl.ac.uk/portal/en/theses/technical-narratives(e01bff94-08bd-4b83-aeef-4e7d6d5b0dfc).html
https://kclpure.kcl.ac.uk/portal/en/theses/technical-narratives(e01bff94-08bd-4b83-aeef-4e7d6d5b0dfc).html
https://www.tate.org.uk/about-us/projects/software-based-art-preservation
https://www.tate.org.uk/about-us/projects/software-based-art-preservation
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Beyond work at Tate, we also build on earlier exploratory research around the preservation of 

VR. In her MA thesis, A Rift in Our Practices?: Toward Preserving Virtual Reality9, Savannah 

Campbell explored the history and development of VR, and reflected on past and emerging 

challenges in its preservation; particularly the failures of historical collecting efforts and the 

need to consider VR systems holistically. She also points out that “there are currently no best 

practices in place for preserving virtual reality hardware and software in cultural heritage 

institutions” and proposes emulation and migration strategies as possible pathways. A report 

by Candice Cranmer, Preserving the emerging: virtual reality and 360-degree video, an 

internship research report10, reports on research undertaken during a six-week placement at 

the Netherlands Institute of Sound and Vision in 2017. The report briefly discusses emulation 

and migration, identifying potential feasibility issues with both. Cranmer’s research also points 

to a need for further work to develop pragmatic strategies, as, “if institutions collect an array 

of new technology before they are ready to preserve in a proactive manner, loss of files and 

the integrity of the work may be compromised”. 

 

As a starting point for our research, we determined that we would first need to identify the VR 

technologies being used by artists and better understand their concerns regarding long-term 

preservation. To do so, we consulted a group of artists and makers engaged in the production 

of VR artworks through a series of interviews, studio visits and questionnaires. Based on 

insights from this process, alongside topics identified in the prior research described above, 

we identified three primary research aims: 

1) To understand the key risks to the longevity of VR artworks created by the 

interdependency, variability and obsolescence of VR hardware and software. 

2) To explore the viability of available preservation strategies for time-based media 

artworks when applied to VR artworks. 

3) To develop pragmatic recommendations for the immediate care of VR artworks, aimed 

at artists and collecting institutions. 

 

The first aim is addressed primarily in Sections 2, 3 and 4. Based on insights from our 

consultation with artists and makers, we were able to identify a set of common key components 

of VR systems, including hardware, software and video formats. These sections report on the 

findings of in-depth research into these key components, identifying their production and role 

within the VR system, including variable characteristics and risk factors. This is organised into 

specific component groups. Section 2 explores VR systems, which are the sets of off-the-shelf 

VR hardware and software used to realise VR artworks. In Section 3 and 4 we examine the 

production and display of the two major media types we identified: real-time 3D software and 

360 video. The second aim is addressed in Section 5. For this work, we considered acquisition 

workflows for similar media and widely used preservation strategies for software-based art, 

grouped under four categories: stockpiling, hardware migration, emulation and code migration. 

 
9 Savannah Campbell, A Rift in Our Practices, Toward Preserving Virtual Reality. MA thesis, New 

York University, 2017, 
https://miap.hosting.nyu.edu/program/student_work/2017spring/17s_thesis_Campbell_y.pdf. 
10 Candice Cranmer, Preserving the Emerging: Virtual Reality and 360-Degree Video, internship 

research report, Netherlands Institute for Sound and Vision, 2017, 
http://publications.beeldengeluid.nl/pub/584/NISV_final_Candice-Krenmer.pdf. 

https://miap.hosting.nyu.edu/program/student_work/2017spring/17s_thesis_Campbell_y.pdf
http://publications.beeldengeluid.nl/pub/584/NISV_final_Candice-Krenmer.pdf
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For each of these we examine the extent to which, based on insights from Sections 2-4, they 

may be applied to the long-term care of VR artworks. Finally, in Section 6 we reflect on our 

findings and address aim three by offering a set of pragmatic steps that can be taken to 

stabilise VR artworks in the short-term. We also propose sector-level goals for future research 

and advocacy. 
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2. VR Systems 
 

VR systems are the sets of interconnected hardware and software components which enable 

access to VR content. The purpose of these systems is to transform inputs (such as 3D data 

and tracking information) into the outputs (such as moving images and haptics) that create a 

VR experience. This section presents an overview of the components of VR systems, which 

we divide into two parts: hardware and software. While we make reference to the content 

created by artists in this section (e.g. 360 video or real-time 3D software), this section focuses 

primarily on off-the-shelf components which artists may select and source but do not typically 

create themselves. These can be characterised as dependencies, on which the VR application 

is dependent in realising a VR experience. While some dependencies might be critical to the 

VR system functioning at all (e.g. an HMD and suitable driver), others may have more subtle 

effects (e.g. a VR runtime artificially increasing frame rate). As these components tend to be 

proprietary and closed source, there is limited information available about the way they 

function, limiting the conclusions that can be drawn. We focus on describing the purpose and 

characteristics of each component and discuss their impact on the overall VR experience. 

Artist-produced VR content is explored further in 3. Real-Time 3D VR and 4. 360 Video. 

 

2.1. VR System Hardware 
 

VR systems involve an array of interlinked hardware components, which will typically include 

a head-mounted display (HMD), tracking system and controller(s), all of which are connected 

to a host computer. The relationships between these components are described in Figure 1 

below. These systems are ultimately centered on the user through the tracking of their 

movements and controller inputs, data from which is translated into interaction with virtual 

space and thus the generation of the frames sent to the HMD. 

 

 
Figure 1. Diagram of a typical VR hardware system. 
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In the majority of cases, all of these components must be present in order for an VR artwork 

to be displayed, which creates immediate preservation risks through the potential for failure of 

the hardware used. Likelihood of hardware failure is elevated for some VR hardware, such as 

HMDs and controllers, as these are directly interacted with when installed. As for other 

specialised hardware encountered in time-based media conservation, as time passes 

obsolete components which stop functioning are likely to become impossible to replace with 

an equivalent device. The hardware systems used by artists tend to be consumer-oriented 

packages sold by a particular manufacturer and contain all the necessary hardware. The 

hardware systems sold and supported by VR companies currently move through rapid 

development and obsolescence cycles. For example, Oculus launched the consumer Rift in 

March 2016 and replaced it with the Rift S in March 2019, while HTC launched the Vive in 

April 2016 and replaced it with the Vive Pro in April 2018. In both cases, there were significant 

changes to the hardware and connectivity. This can be contrasted to, for example, Sony’s 20” 

PVM CRT monitors which were in production for over 20 years and remained compatible with 

a consistent set of video standards.  

 

2.1.1. Head-Mounted Displays 

 

A head-mounted display (HMD) is a display device which is attached directly to a user's head. 

HMD devices contain either one or two screens, positioned in order to display a monoscopic 

or stereoscopic image at close proximity to the user's eyes. This close proximity creates a 

wide field of view image in order to increase immersion, while stereoscopy creates the illusion 

of depth perception. HMDs can be tethered (i.e. connected to a PC via physical cabling) or 

untethered (i.e. either standalone or connected to a PC wirelessly). At the time of writing, the 

latter is typically achieved by inserting a mobile device into an HMD (e.g. the Samsung Gear 

VR) or using mobile technology integrated into the HMD itself (e.g. the Oculus Quest).  

 

As we found HMDs were used by all the artists we spoke to, for the purposes of this report we 

assume the use of these devices for viewing real-time 3D software and 360 video. There are, 

however, other approaches that could be taken, such as large scale projection or video 

monitor walls. It should be noted that in many cases an HMD could be substituted for a static 

screen (along with keyboard, mouse or other peripheral device input to control viewing 

direction). 

 

We have identified the following variable characteristics among HMDs: 

● Screen panels. There is variation in the type (LCD/OLED)11, colour reproduction, pixel 

density, refresh rate, aspect ratio and latency of the panels embedded in HMDs. 

● Lenses. In order to achieve clear visibility of the panels at close range and to maximise 

field of view, thick Fresnel lenses are placed between the eye and the panels. The 

image distortion they introduce must be corrected for in the frames sent to the HMD 

(see 2.1.1. Head Mounted-Displays) using a hardware-specific algorithm (see 2.2.1. 

 
11 A Real New World, Understanding VR HMD Display Technology, 2018, 

https://realnewworld.com/vr-hmd-display-technology/. 

https://realnewworld.com/vr-hmd-display-technology/
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VR Runtimes) which can result in variation in the quality of the image across the field 

of view. 

● Field of view. In the context of HMD design, field of view (FOV) is the extent to which 

the LCD panels completely cover the user's vision. This is a product of the panel and 

lense combination used. 

● Tethering. HMDs can be tethered, meaning they attach to a host computer system 

(e.g. the Oculus Rift), or self-contained, meaning they contain a computer system (e.g. 

the Oculus Quest).  

● User experience. The experience of wearing an HMD can vary considerably based 

on characteristics of its physical construction such as eye piece cushioning, strap 

design and overall weight.  

● User calibration. HMD manufacturers provide a calibration procedure to customise 

the headset for the individual user e.g. interpupillary distance. 

 

2.1.2. Tracking Systems 

 

Tracking systems are used to capture the user's rotational and positional movement within 

physical space, so that this can be translated into movement in virtual space. The range of 

movements able to be interpreted and therefore represented in a virtual experience can be 

categorised as: three degrees of freedom (3DoF) and six degrees of freedom (6DoF). 3DoF 

refers to the pitch, yaw and roll of the head, rotational movements that can be interpreted by 

internal motion sensors in an HMD. 6DoF expands on this to include the positional movements 

of up/down, left/right and forwards/backwards. These positional movements are monitored by 

tracking systems requiring external components or reference to external surroundings. From 

a user's perspective, 3DoF allows the user to look around, whereas 6DoF allows the user to 

move and look around. The six types of movement possible are visualised in Figure 2 below. 

 

 
Figure 2. Diagram showing types of movement supported in 6DoF. Image credit: GregorDS, 2018,  

https://en.wikipedia.org/wiki/Six_degrees_of_freedom#/media/File:6DOF.svg, CC BY-SA 4.0.  

https://en.wikipedia.org/wiki/Six_degrees_of_freedom#/media/File:6DOF.svg
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There are two technical approaches to implementing tracking systems known as inside-out 

and outside-in tracking respectively. Inside-out tracking uses sensors placed on the HMD. 

Outside-in tracking uses sensors mounted in the external environment. Both approaches may 

utilise markers placed in the environment or on the HMD to improve tracking. 

 

We have identified the following variable characteristics among tracking systems: 

● Area. Flexibility in the tracked area can vary, including the maximum/minimum size 

and shape limitations (e.g. to accommodate physical spaces without four straight 

sides).  

● Resolution. Systems can capture and transmit different densities of tracking data for 

software processing. 

● Latency. The time taken for tracking data to be processed and translated into 

movement in virtual space. From the perspective of the user, this contributes to the 

level of responsiveness when interacting with the virtual environment. 

● Occlusion. The ability of the system to tolerate occlusion (i.e. blocking of a tracking 

device or marker by a physical obstacle). 

● Hand/finger tracking. The level of support for tracking movement in the hands or 

fingers of the user. Hand and finger movement can then be represented in virtual space 

as a means of increasing immersion within and interaction with the virtual environment. 

● Eye tracking. Tracking systems can support tracking of the user's eye movement. 

This information can be used in rendering techniques which increase performance, like 

foveated rendering, or as a means of interacting with the virtual environment. 

● Virtual boundary representation. Tracking systems use supporting software to 

create a representation of the physical boundaries of the interactive area in virtual 

space, to help to avoid problems like users colliding with their surroundings when 

wearing an HMD. The way in which the software represents the boundary limits of the 

interactive area to the user can vary (e.g. Oculus Guardian, Vive Chaperone). 

 

2.1.3. Controllers 

 

Controllers are physical devices which allow a user to interact with the virtual environment. A 

VR system can use a hand-held video game controller, combining joysticks, buttons and pads, 

and designed for screen-based gaming. VR hardware manufacturers have also experimented 

with various forms of custom controller. These tend to prioritise freedom of arm movement 

when compared to the typical form factor of a video game controller, which requires the two 

hands of the user to be held in a fixed, relative position. In some cases these controllers may 

be visibly represented inside the virtual environment to create a continuity between physical 

sensation and visual perception of virtual space. 

 

We have identified the following variable characteristics among controllers: 
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● Design. The form factor and layout of the device, particularly the way it is gripped, 

creates a particular user experience (e.g. the Oculus Rift used trigger-type controllers, 

while the Vive used wand-type controllers). 

● Button/stick/pad configuration. The number and the types of interactable elements 

on the controller allow for different levels of control to be configured. 

● Haptics. Physical feedback in the controller (e.g. vibrations) can be created to respond 

to events in the virtual environment, with the aim of increasing immersion. 

● Virtual representation. A representation of the controller and/or player hands can be 

created inside the virtual environment, with the aim of increasing immersion. 

 

2.1.4. Computers 

 

Computer systems orchestrate the execution of the software and its interaction with the VR 

hardware. The high performance requirements of VR have tended to require the use of 

powerful desktop PCs, including a dedicated graphics card (GPU). However, mobile 

computing technology is also being used and may become increasingly popular as it becomes 

more powerful. This has resulted in all-in-one HMD like the Oculus Quest (which relies on a 

small computer built into the HMD itself12) and the GearVR, which is a HMD designed for 

pairing with a Samsung mobile phone. While the exact computer hardware requirements of a 

VR application can vary considerably depending on the rendering techniques used, they tend 

to utilise a certain set of hardware components which are described in Table 1. 

 

Name Description 

Central Processing 
Unit (CPU) 

The CPU executes instructions contained in program code when an 
application is run. For VR applications, this includes managing the rendering 
of frames by sending jobs to the GPU and running physics simulations13. 

Random Access 
Memory (RAM) 

RAM is volatile memory into which applications are loaded when they are 
executed by the CPU. This is as important for VR applications as any other 
software but is less likely to significantly impact performance compared to 
the CPU or GPU. 

Graphics 
Processing Unit 
(GPU) 

The GPU is a specialised piece of hardware used in the rendering of 3D 

graphics. GPUs can be found as dedicated expansion cards (as is frequently 

the case for VR systems) or integrated into some CPUs. 

Storage Devices Storage devices contain non-volatile memory used to store user programs 
and data. SSDs provide faster speeds so are often favoured over traditional 
magnetic HDDs for high performance applications such as VR.  

Interfaces VR systems can use a large number of peripheral devices which must be 
connected to the host machine, and so require the relevant interfaces to be 
present. This typically includes multiple USB ports for tracking and sensor 

 
12 Jad Meouchy, Oculus Quest Teardown, 2019,  https://medium.com/badvr/oculus-quest-headset-

disassembly-2f404b004a3c  
13 Google, VR Performance best practices, 2018, https://developers.google.com/vr/develop/best-

practices/perf-best-practices.  

https://medium.com/badvr/oculus-quest-headset-disassembly-2f404b004a3c
https://medium.com/badvr/oculus-quest-headset-disassembly-2f404b004a3c
https://developers.google.com/vr/develop/best-practices/perf-best-practices
https://developers.google.com/vr/develop/best-practices/perf-best-practices
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data and HDMI/DisplayPort connections for sending frames to the HMD and 
a monitor. 

Table 1. Key components of a desktop computer suitable for running VR applications. 

 

As a result of the large range of components available with which to construct computer 

systems and their complex interactions, understanding the variance they introduce to VR 

systems is beyond the scope of our research. However, we can make two broad 

generalisations about the significance of computer hardware. The first is that the primary 

purpose of hardware selection when creating a system to support a VR application is 

performance. Each component can be critical in lowering latency and increasing the speed 

with which frames are generated, both of which are important factors in creating a comfortable 

experience for a user. The second is that the GPU is of primary importance within this 

constellation of components, given its critical role in the processing of shaders and the creation 

of the frames sent to the HMD. Different GPU models, in combination with the specific driver 

versions installed, support different rendering features. For example, to use features of DirectX 

11, the GPU and driver combination must support DirectX 11. 

 

2.2. VR System Software 
 

VR systems depend on several layers of software which operate in conjunction with hardware. 

These layers are illustrated in Figure 3 below.  

 

 
Figure 3. Diagram of components found in a generic VR software environment. 
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The software components of a VR system center on the VR application itself, the execution of 

which engages these other layers. VR applications are not discussed in this section but are 

covered in detail in Sections 3 (for Real-Time 3D) and 4 (for 360 Video). This section instead 

focuses on understanding the variance introduced by the other third-party software layers on 

which a VR application depends. Software dependencies arise through design decisions 

during the development process, usually because of the choice to target a specific set of 

hardware. The generic core components of software environments used to run VR 

applications are summarised in Table 2 below and discussed further in the subsequent 

sections. 

 

 

Name Description Examples 

Operating System Supports a computer's general 
operation, including managing 
interactions between software and 
hardware. 

Windows, Mac OS, Linux 

3D API 

 

Abstraction layer used by software to 

access the features of graphics 

hardware. Typically packaged with an 

OS e.g. DirectX is a core component of 

Windows, while Metal is a core 

component of MacOS. 

Vulkan, DirectX, OpenGL, Metal 

VR Runtime 

 

Provides software with access to VR 
hardware (such as HMDs and tracking 
systems) and implements certain 
rendering features (e.g. lens distortion). 

Oculus, OpenVR (Vive/SteamVR), 

Windows Mixed Reality 

Device Drivers  

 

Controls a connected hardware device. 

For consumer oriented VR products, 

device drivers are typically bundled with 

and managed by the VR runtime. 

GPU/display, HMD, controllers, 

positional tracking system 

Additional Libraries  Any additional libraries required to run 
the application which are not found in 
the operating system or VR runtime. 

.NET/Mono runtimes, MSVC++ 

runtimes 

Table 2. Description of the core components of a generic VR system with real-world examples of 

each technology. 

 

Comments by the artists and makers we spoke to indicate that the management of software 

environment components is a significant challenge when working with VR. These 

environments are made particularly volatile by the tendency for VR runtime software to 

integrate automatic software updates. Several of the artists we spoke to commented that these 

updates made maintaining access to specific versions of their software challenging by 

breaking dependencies. In some cases, they had resorted to creating dedicated offline 

systems to ensure they remain static snapshots of the software environment. It is clear that if 

we hope to preserve and manage such an environment, particularly if we hope to effectively 

apply strategies such as emulation, we need to ensure we archive snapshots of working 

software environments. We recommend that the storage volumes containing software 
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environments for artist-verified systems be captured using disk imaging for preservation 

purposes — a topic we discuss in more detail in 5.1. Acquiring VR Artworks. 

 

2.2.1. VR Runtimes 

 

A VR runtime is a software package which orchestrates communication between application 

software and VR hardware. VR runtimes are typically closely linked to the manufacturer of VR 

hardware. A brief summary of actively developed VR runtimes can be found in Table 3 below.  

 

Name Description Target Platforms 

SteamVR Originally created for Valve’s own Vive VR hardware, 

it has since expanded to include support for other VR 

systems. Implements Valve’s own OpenVR14 

specification, but is not itself open source15. 

Windows, Linux, 

MacOS (beta only) 

Oculus Oculus’s runtime for their Rift VR systems. Note: 
Oculus Go has the mobile version of the runtime 
installed on the HMDs embedded hardware. 

Windows, MacOS, 
Linux 

Open Source Virtual 

Reality (OSVR) 

An open-source VR runtime intending to add support 
for all major VR hardware. It’s future is uncertain, as 
commits to their GitHub repository have been 
infrequent since 2017. The main contributor, Ryan A. 
Pavlik, is now working on the OpenXR specification. 

Windows, Android, 
Linux (partial 
support), Mac OS X 

Daydream / 

Cardboard 

Google’s mobile-only platform for VR. Uses ‘Google 
VR Services’ on supported Android versions and 
phones. 

Android 

GearVR A mobile-focused VR HMD kit developed by 
Samsung, which requires the use of a compatible 
Samsung Galaxy mobile phone. 

Android 

Windows Mixed 

Reality 

Supports a variety of Windows Mixed Reality HMDs 
and the HoloLens HMDs. Has OpenXR support. 

Windows 

PSVR A VR system for Sony’s Playstation 4. Requires a 
licence to develop for — no public SDK/engine/tools. 

Playstation 4 

ARKit Apple’s augmented reality (AR) platform. The runtime 
is integrated into iOS 11 onward and supports 
hardware. 

iOS 

ARCore  Google’s mobile-only augmented reality (AR) 
platform. Uses ‘Google Play Services for AR’ on 
supported Android versions and phones. 

Android 

 
14 More information about OpenVR can be found in this article: Matias Nassi, Introduction to OpenVR 

101 Series: What is OpenVR and how to get started with its APIs, 2018,  
https://skarredghost.com/2018/03/15/introduction-to-openvr-101-series-what-is-openvr-and-how-to-
get-started-with-its-apis/ 
15 See discussion on OpenVR’s GitHub repository: 

https://github.com/ValveSoftware/openvr/issues/154 

https://skarredghost.com/2018/03/15/introduction-to-openvr-101-series-what-is-openvr-and-how-to-get-started-with-its-apis/
https://skarredghost.com/2018/03/15/introduction-to-openvr-101-series-what-is-openvr-and-how-to-get-started-with-its-apis/
https://github.com/ValveSoftware/openvr/issues/154
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Monado  A Linux runtime implementing the OpenXR 
specification in development by Collabora.  

Linux 

Table 3. Description of VR runtimes still in active development at time of writing. 

 

From a user perspective, using a VR runtime typically involves using an executable installer 

provided by the manufacturer of the VR hardware used. This installer carries out the download, 

installation and configuration of up-to-date versions of necessary libraries, drivers and 

applications (such as device management and calibration GUIs). From a preservation 

perspective, the behind-the-scenes nature of this installation process, in addition to the 

frequency of updates, makes collecting and archiving specific runtime versions challenging. 

The only way we have identified to ensure all elements of a runtime are captured is to carry 

out imaging of the entire software environment (see 5.1. Acquiring VR Artworks). 

 

We identified a number of roles that the VR runtime plays in the process of running a VR 

application. One role is to prepare frames to be sent to the HMD. As HMDs contain thick lenses 

in front of the panels to maximise the field of view at close viewing distance, frames sent to 

the HMD must be pre-distorted to compensate for distortion these lenses introduce. 

Techniques can be used to improve the quality of the distorted image. Supersampling (i.e. 

rendering at a higher resolution and downscaling) can be used to further compensate for the 

loss of pixel data in the outer edges of the rendered frame as a result of the distortion 

correction process. Lens matched shading increases resolution consistency by rendering an 

image which more closely matches the distorted images sent to the HMD16. Lens distortion 

processes are typically handled by a VR runtime specific to the HMD manufacturer and will 

use a distortion algorithm specific to the lens shape in the HMD which may not be made public. 

This can create a strong dependency relationship between a VR application and a 

manufacturer's runtime. Techniques have been developed to derive distortion algorithms 

manually using photography17. The VR runtime also manages the tracking system and 

supports a visual representation of a boundary at the limits of safe physical space. This and 

other features can be configured and calibrated by the user via a management application. 

 

Additional proprietary techniques can be implemented by the VR runtime to improve rendering 

performance. Reprojection techniques (sometimes known by terms such as timewarp and 

spacewarp) are used by the current generation of VR runtimes to artificially increase framerate 

when a host system is unable to generate frames at the rate required to avoid discomfort in 

VR18. These techniques generate extra frames by distorting the previously rendered frame 

based on the movement of the user and the scene, offering a very efficient way to generate 

additional frames. As these techniques are used simply to achieve higher framerates, and are 

not apparent to the user, they do not seem to be an important characteristic of VR runtimes 

from a preservation perspective. They could potentially be replaced by other software 

providing similar functionality or may simply become unnecessary over time due to advances 

in computer power. However, they could remain relevant in emulation, where an original 

 
16 NVIDIA, VRWorks - Lens Matched Shading, n.d., 

https://developer.nvidia.com/vrworks/graphics/lensmatchedshading. 
17 OpenHMD, Universal Distortion Shader, 2017, 

https://github.com/OpenHMD/OpenHMD/wiki/Universal-Distortion-Shader. 
18 David Heaney, VR Timewarp, Spacewarp, Reprojection, And Motion Smoothing Explained, 2019, 

https://uploadvr.com/reprojection-explained/. 

https://developer.nvidia.com/vrworks/graphics/lensmatchedshading
https://github.com/OpenHMD/OpenHMD/wiki/Universal-Distortion-Shader
https://uploadvr.com/reprojection-explained/
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software environment would still be used and artificially increasing frame rates may still be a 

concern.  

 

VR runtimes are a source of concern in the preservation of VR artworks due to their 

proprietary, hardware-specific nature and critical role in providing applications with access to 

that hardware. Without the installation of an appropriate runtime on the host computer system, 

VR hardware may function in a limited way (e.g. without appropriate lens distortion correction) 

or not at all. Adding a further layer of complexity, the VR application must also have support 

for the runtime built in. Adding support for a specific VR runtime to a VR application requires 

adding support for the appropriate API during development. In the Unity and Unreal Engine 4 

game engines, discussed further in 3.1. Real-Time 3D VR Production Materials, this involves 

installing or enabling certain plugins or SDKs. From the perspective of an artist who wants to 

utilise a specific set of VR hardware, the use of hardware-specific runtimes means that they 

must build this support into their application during development, or it will not be available to 

the packaged application. This may greatly restrict the use of other VR hardware in the future 

with that application, without modifying the source project. 

 

The development and adoption of open VR runtime standards may help alleviate this problem. 

An open-specification runtime standard has been developed by the Khronos Group called 

OpenXR19, which aims to standardise the connections between VR applications and VR 

runtimes, and VR runtimes and VR hardware (see Figure 4 below). These are considered 

distinct goals, thus allowing manufacturer-specific VR runtimes a continued place within the 

VR software ecosystem, providing they can speak the language of OpenXR. 

 

 
Figure 4. Diagram of current XR market fragmentation (left) and interoperability hoped to be created 

by OpenXR standard (right). Image credit: Khronos Group, 2019. 

 

Adoption of such a standard by hardware manufacturers would be advantageous to artists, as 

it would allow them to support a range of hardware with just one plugin. It would also be 

advantageous from a preservation standpoint by opening up more options for hardware 

 
19 Khrono Group, OpenXR Overview, n.d., https://www.khronos.org/openxr. 

https://www.khronos.org/openxr
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migration and other interventions — topics we discuss further in 5.5. Code Migration and 

Related Approaches. The OpenXR 1.0 specification was released in July 2019, and currently 

has several public runtime implementations including Oculus20 (runtime v19 or later), 

Monado21 for Linux (which is open source) and Windows Mixed Reality22. On the engine side, 

support has been added to Unreal Engine since version 4.23 through an OpenXR plugin, while 

Unity has plans to support OpenXR23.  

 

2.2.2. Operating Systems 

 

An operating system (OS), as for other kinds of software application, is responsible for 

managing the execution of a VR application and software access to hardware. It may also 

provide access to generic libraries and drivers (e.g. for audio and bluetooth devices) required 

by some VR hardware and software. As a result of the necessary use of such components, 

VR applications are typically built to support a particular OS and will not function on others 

unless recompiled from the source project. For VR applications we identified two particularly 

important components which are provided by the OS. The first is the implementation of a 3D 

API, which is called upon by a VR application to render 3D graphics. OS level support for 3D 

APIs is summarised in 2.2.3. 3D APIs. The second is supporting direct mode access to VR 

hardware, which considerably improves user experience when setting up an HMD. This is 

discussed further in 2.2.4. VR Device Drivers.  

 

2.2.3. 3D APIs 

 

3D Application Programming Interfaces (APIs) are an abstraction layer used to provide 

applications with access to functionality related to rendering 3D graphics. They are typically 

implemented in part by the operating system and in part by the GPU driver software, both of 

which must be present for an application to be able to use that particular API with that GPU 

hardware. 3D APIs are a ubiquitous component of modern VR development and real-time 3D 

development more generally. An application must be built to support a particular 3D API. A list 

of currently maintained 3D APIs can be found in Table 4. 

 

3D API Operating System 
Implementations 

Description 

Direct3D Windows 10, Linux 
(limited support via 
Wine) 

Proprietary API that has been part of Windows 
OS’s since Windows 95, as part of DirectX. 
Support on other platforms is limited to Wine’s 
implementation for Linux which is not complete. 

OpenGL Windows 10, MacOS 
(deprecated in 

Open standard for 3D APIs implemented on 
many platforms (and on mobile through the 

 
20 Oculus, OpenXR Support for PC Development, web page, n.d. 

https://developer.oculus.com/documentation/native/pc/dg-openxr/. 
21 Monado, Monado - XR Runtime (XRT), n.d., https://monado.freedesktop.org/. 
22 Sean Endicott, OpenXR now available on the Microsoft Store for Windows Mixed Reality, 2019, 

https://www.windowscentral.com/openxr-now-available-microsoft-store-windows-mixed-reality. 
23 mfuad, Unity’s plans for OpenXR, 2018, https://forum.unity.com/threads/unitys-plans-for-

openxr.993225/. 

https://developer.oculus.com/documentation/native/pc/dg-openxr/
https://monado.freedesktop.org/
https://www.windowscentral.com/openxr-now-available-microsoft-store-windows-mixed-reality
https://forum.unity.com/threads/unitys-plans-for-openxr.993225/
https://forum.unity.com/threads/unitys-plans-for-openxr.993225/
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10.14), Linux OpenGL ES variant). Developed and maintained 
by Khronos Group. 

OpenGL for Embedded 
Systems / OpenGL ES 

Windows, Linux, 
Android 

Open standard for 3D APIs on embedded 
devices and portables such as mobile phones. 
Developed and maintained by Khronos Group. 

Metal MacOS Apple’s low-level 3D API intended as a 
competitor to Direct3D 12 and Vulkan. 

Vulkan Windows 10, Linux Successor to OpenGL developed by the Khronos 
Group, this open standard is a low-level API 
designed to compete with Direct3D 12 and 
Metal. 

Table 4. List of currently maintained 3D APIs and the operating systems they have been implemented 

on. 

 

In their core features, the current generation of 3D APIs described in Table 4 are relatively 

similar24. This is reflected in the ability of modern real-time 3D engines to target a variety of 

APIs when building applications. Indeed, in current versions of Unreal Engine and Unity, 

applications can be built to support any of the APIs listed in Table 4. For Unity, the separation 

of the custom application content and the Unity player component means that an application 

can be executed using any of the APIs supported by the standard player component — the 

choice of API to use is then automatically chosen based on availability or controlled using 

launch options.  

 

Despite similarity in core features, there remains the potential for the choice of 3D API to 

introduce variability in rendering characteristics. For example, the real-time ray tracing 

rendering technique is currently supported only in Microsoft’s DirectX version 1225 and 

Vulkan26. The choice of API is also significant in terms of the potential loss of API support from 

future GPU driver and operating system updates. There are indications that changes of this 

kind happen in practice, a notable example being Apple’s choice to deprecate the use of 

OpenGL 3D rendering API on MacOS in favour of their own Metal API27. There are also 

historical examples of APIs becoming obsolete, such as the Glide API created by the graphics 

card manufacturer 3dfx and widely used in the late 1990s, but eventually being superseded 

by Direct3D and OpenGL28. Ensuring support for open standards (such as OpenGL and 

Vulkan) as opposed to proprietary, platform-specific APIs (such as Direct3D and Metal) when 

building VR applications may lower the risk of losing access through obsolescence, as an 

open specification makes writing compatibility software more practical. 3D APIs, being a 

combined product of operating system and GPU drivers, are made available to an application 

by ensuring compatible versions of these two components are present.  

 
24 Alain Galvan, A Comparison of Modern Graphics APIs, 2020, https://alain.xyz/blog/comparison-of-

modern-graphics-apis. 
25 Shawn Hargreaves, Announcing DirectX 12 Ultimate, 2020, 

https://devblogs.microsoft.com/directx/announcing-directx-12-ultimate/.  
26 Khronos Group, Ray Tracing In Vulkan, 2020, https://www.khronos.org/blog/ray-tracing-in-vulkan. 
27 Samuel Axon, The end of OpenGL support, plus other updates Apple didn’t share at the keynote, 

2018,  https://arstechnica.com/gadgets/2018/06/the-end-of-opengl-support-other-updates-apple-didnt-
share-at-the-keynote/. 
28 Tony Smith, 3dfx open sources Glide, Voodoo 2 and 3 specs, 1999, 

https://www.theregister.com/1999/12/07/3dfx_open_sources_glide_voodoo/. 

https://alain.xyz/blog/comparison-of-modern-graphics-apis
https://alain.xyz/blog/comparison-of-modern-graphics-apis
https://devblogs.microsoft.com/directx/announcing-directx-12-ultimate/
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://arstechnica.com/gadgets/2018/06/the-end-of-opengl-support-other-updates-apple-didnt-share-at-the-keynote/
https://arstechnica.com/gadgets/2018/06/the-end-of-opengl-support-other-updates-apple-didnt-share-at-the-keynote/
https://www.theregister.com/1999/12/07/3dfx_open_sources_glide_voodoo/
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2.2.4. VR Device Drivers 

 

VR device drivers are specialised software programs which communicate with hardware 

devices. All VR hardware devices require a suitable driver to be present in order to function, 

whether it be manufacturer-supplied or a generic driver packaged with the OS. There is limited 

information available about the role of these drivers, which for most consumer-oriented VR 

hardware (as typically used by artists) are proprietary and closed-source. What we do know 

is largely a result of the efforts of the open source community to create open-source drivers, 

such as OpenHMD29, libsurvive30 and Monado31. These projects have demonstrated that many 

core elements of manufacturer supplied driver functionality can be reimplemented in open-

source software and their documentation is a useful resource for learning more about VR 

hardware drivers. One important feature of device drivers is management of access to the 

HMD. Since the arrival of consumer-oriented VR HMDs (namely the Oculus Rift CV1 and HTC 

Vive), HMD drivers implement a feature known as direct mode. This allows an application to 

treat an HMD as a dedicated and distinct display device, rather than as an additional monitor 

which would extend the desktop32. The latter is known as extended mode, and is now rarely 

used due to the amount of configuration required and the improved user experience provided 

by direct mode. At time of writing, extended mode remains accessible in current versions of 

SteamVR but has been removed from the Oculus runtime. 

 

From a user perspective, there is little distinction in the installation and configuration process 

between VR device drivers and the VR runtime, which carries out this process behind-the-

scenes. From examination of SteamVR on Windows, we observed that it uses both installed 

system drivers, managed by the OS, and DLL drivers which are loaded and managed by the 

runtime. These factors make extracting drivers for storage independent of a runtime 

environment impractical. As for other components of the software environment, they are likely 

to be best preserved as part of a captured disk image (see 5.1. Acquiring VR Artworks). 

 

2.2.5. GPU Drivers 

 

GPU drivers allow software to interact with specialised graphics processing hardware known 

as a Graphics Processing Unit (GPU) or graphics card. Beyond supporting 3D rendering 

capabilities, GPU drivers implement device-specific support for direct mode VR (for example, 

NVIDIA added support for Oculus direct mode in 355.83, HTC Vive direct mode in 361.75 and 

Windows Mixed Reality in 387). Drivers also form a part of the implementation of different 3D 

APIs. The importance of the GPU driver is a concern for long-term preservation, as making 

changes to GPU hardware will likely necessitate a change to the GPU driver, potentially 

resulting in loss of access to rendering features, VR direct mode and 3D APIs. 

  

 
29 OpenHMD, web page, n.d., http://www.openhmd.net/. 
30 libsurvive, GitHub repository, 2020, https://github.com/cntools/libsurvive. 
31 Monado, Monado - XR Runtime (XRT), n.d., https://monado.freedesktop.org/. 
32 Monado, What is Direct Mode, n.d.,https://monado.freedesktop.org/direct-mode.html. 

http://www.openhmd.net/
https://github.com/cntools/libsurvive
https://monado.freedesktop.org/
https://monado.freedesktop.org/direct-mode.html
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3. Real-Time 3D VR 
 

Real-time 3D (RT3D) is the use of software to dynamically generate a moving image from 3D 

data. In contrast to pre-rendered 3D, which uses similar data sources, the real-time nature of 

the process means that the moving image sequence can be dynamic and respond to user 

interaction. This technology has been used extensively in the video game industry and has 

found use in contemporary art — there are five artworks in the Tate collection which use RT3D. 

Alongside 360 video, RT3D is one of two main approaches that can be taken to producing VR 

content. RT3D VR can be considered an extension of real-time 3D rendering, as applications 

are built using the same tools and underlying principles. RT3D VR content produced by artists 

is ultimately compiled as a software application, a package of code and data which is 

executable on a suitable computer system. 

 

In order to understand how to preserve RT3D VR applications, we need to understand how 

they are created and how they function. In this section, we will start by introducing the 

production process for real-time 3D applications, with a focus on the engine-based approach 

taken by the artists we interviewed. Given evidence supporting the value of source materials 

in the conservation of software-based art33,34, we will also consider the practical implications 

of collecting production materials associated with VR applications. In the next section, we will 

examine the compiled software applications (sometimes known as builds) which are the 

primary output of the production process. In the final section, we will explore approaches to 

the creation of conservation documentation for real-time 3D VR applications. 

 

3.1. Real-Time 3D VR Production Materials 
 

The process of producing RT3D VR artworks involves bringing together an array of assets — 

various data types including 3D models, textures and audio — in a 3D engine. A 3D engine is 

a development environment for creating real-time 3D content, which can then be exported (or 

built) as an executable application. This section examines the production process in further 

detail, and identifies the key software tools and data sources involved.  

3.1.1. Engines and Project Files 

 

Real-time 3D engines are development environments for creating real-time 3D software. They 

can integrate a broad range of features useful in constructing 3D environments and typically 

have a graphical user interface (GUI) built around the manipulation of 3D scenes through a 

viewport (see Figure 5). Features included in a contemporary game engine may include: 

 

 
33 Deena Engel and Glenn Wharton, Reading between the Lines: Source Code Documentation as a 

Conservation Strategy for Software-Based Art, Studies in Conservation 59 (6): 404–15, 2014, 
https://doi.org/10.1179/2047058413Y.0000000115. 
34 Mark Hellar and Deena Engel, Computational Provenance and Computational Reproducibility: What 

Can We Learn about the Conservation of Software Art from Current Research in the Sciences?, 
Electronic Media Review 4, 2015,  
https://resources.culturalheritage.org/emg-review/volume-4-2015-2016/engel-hellar/.  
 

https://doi.org/10.1179/2047058413Y.0000000115
https://doi.org/10.1179/2047058413Y.0000000115
https://doi.org/10.1179/2047058413Y.0000000115
https://resources.culturalheritage.org/emg-review/volume-4-2015-2016/engel-hellar/
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● Renderer: Generates animated 3D graphics in real-time from the assembled data 

sources (geometry, materials, lighting and particle systems etc.). 

● Shader management: Enables authoring of shaders (small rendering programs which 

run on the GPU) and translation35 into 3D API specific languages such as HLSL 

(Direct3D), GLSL (OpenGL) and SPIR-V (Vulkan) 

● Scripting: Allows creation of dynamic or interactive behaviours using programming 

languages or equivalent interfaces (e.g. the Blueprints graph editor in Unreal Engine 

4). 

● Physics simulation: Simulates an approximation of physical systems and the 

resulting interaction between geometry components. 

● Audio engine: Allows playback and manipulation of audio, including positional and 

spatial components. 

● Asset management: System for the import, export and organisation of assets such 

as textures, 3D models and audio files. 

● Cross-platform build support: Allows compilation of projects to binaries for different 

platforms, including various operating systems, 3D APIs and VR runtimes. 

 

Much like VR systems, real-time 3D engines have been developed primarily in the context of 

video game production. The use of third-party engines is advantageous because many core 

features of an engine can be reused: there is little value to engaging in the lengthy process of 

implementing a 3D renderer or physics engine when an existing implementation can meet 

your requirements and allow focus on the more creative elements of the production process.  

 

 
Figure 5. A screenshot of a simple 3D scene in the Unreal Engine 4.22 editor software. 

 
35 Where compilation or interpretation of shader code is handled by the GPU at runtime. 
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The GUI-based editors (see Figure 5) distributed with engines lower the barriers to entry, 

allowing those without a background in 3D rendering techniques and programming to develop 

real-time 3D software. These factors make third-party engines particularly appealing to artists 

— the six that we spoke during this research worked exclusively with the third-party engines 

Unity and Unreal Engine 4. 

 

While larger game studios might develop their own engine, many will licence a third-party 

engine such as the aforementioned Unity and Unreal Engine 4 (UE4)36. Unity and UE4 are 

both free to use software packages which employ revenue-based licensing models. Unity uses 

a tiered subscription model which requires users with revenue or funding of over $100,000 

over the past 12 months to buy a paid plan, which rises in cost in several further tiers based 

on higher revenue levels37. UE4 uses a licencing model which requires users to pay a 5% 

royalty to Epic Games if their product is monetised and revenues exceed $1,000,000 USD38. 

Although they weren’t used by the artists we spoke to, there are alternative RT3D development 

tools available under open-source, permissive licenses, including the engine Godot39 and web 

frameworks A-Frame40 and Three.js41. 

 

Applications are developed in engines as projects: collections of data and code arranged in a 

well-defined folder structure. Encouraging the preservation of the source projects of real-time 

3D applications seems a logical approach to their long-term preservation, as these are 

analogous to source code. Retaining these opens up options of modification and migration in 

order to keep the software running in future technical environments (see 5.5. Code Migration 

and Related Approaches). The Unity and Unreal Engine 4 engine project formats exist within 

a single directory, which can be archived as-is to capture the hierarchy of assets, levels and 

other materials. However, they remain contingent on the appropriate version of the engine 

binaries for access — opening them in another version may cause damage to the project, 

failure to compile or other compatibility issues.  

 

Reliance on engine binaries presents several challenges for ongoing access to engine 

projects: 

● Engines are typically managed by installer applications which conceal details of the 

installation and configuration process.  

● Engine projects may also have additional dependencies on third-party pieces of 

software in order to build for certain platforms (e.g. Google’s Android SDK must be 

installed to create Android builds) or on plugins.  

● Engine updates are relatively frequent and there is a tendency to remove access to 

old engine binaries over time. For example, an average of four major versions of Unreal 

 
36 Limited data is available to make meaningful estimates as to how many, but this survey of data 

about games on the Steam distribution platform provides some indication: 
https://www.reddit.com/r/gamedev/comments/8s20qp/i_researched_the_market_share_of_game_engi
nes_on/. 
37 Unity, Compare Unity plans, 2021, https://store.unity.com/compare-plans. 
38 Unreal Engine, Frequently Asked Questions, 2021, https://www.unrealengine.com/en-US/faq. 
39 Godot Engine, web page, 2021, https://godotengine.org/. 
40 A-Frame, web page, 2021, https://aframe.io/. 
41 Three.js, web page, 2021, https://threejs.org/.  

https://www.reddit.com/r/gamedev/comments/8s20qp/i_researched_the_market_share_of_game_engines_on/
https://www.reddit.com/r/gamedev/comments/8s20qp/i_researched_the_market_share_of_game_engines_on/
https://store.unity.com/compare-plans
https://www.unrealengine.com/en-US/faq
https://godotengine.org/
https://aframe.io/
https://threejs.org/
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Engine have been released every year since 2014. At the time of writing versions of 

Unreal Engine binaries prior to version 4.0.2 (released 28 March 2014) are no longer 

publicly accessible, while accessible Unity binaries extend back as far as version 3.4.0 

(released 26 July 2011).  

 

It is worth noting that even if a source project is archived with suitable engine binaries, without 

archiving complete engine source code we have only a partial representation of the software. 

Both UE4 and Unity have accessible source code repositories but in neither case is the full 

source code made available under an open-source licence. A partial C# component of the 

Unity source code is publicly accessible on GitHub but does not allow modification or 

redistribution42. Full source access and modification rights are only available with a higher tier 

paid subscription and an individually negotiated source access agreement. The full UE4 

source code can be read and modified by anyone agreeing to the Unreal Engine EULA43 but 

not redistributed in source code form. 

 

3.1.2. Scenes and Assets 

 

The term asset is used to describe a unit of data which is imported into or created in a game 

engine, and used in the construction of a virtual scene (also known as a level, map or 

scenegraph). Assets can include a huge range of file types, including meshes (3D geometry), 

textures, materials, particle systems and audio. The creation of assets may involve various 

specialised workflows and tools outside the engine, from which a suitable interchange format 

is exported and used to import them into the engine. Based on examination of source projects 

during this research, files appear to retain their original format when imported into Unity but 

are converted to a native format when imported into Unreal Engine 4. We have not been able 

to locate public documentation of the latter format. The variety of asset types is such that we 

limited the scope of our research and the following discussion to examining the most unique 

of these to 3D rendering: the 3D model. In this section we will discuss what constitutes an 

engine-ready 3D model, which we define as a virtual representation of an object, and identify 

common file formats used. 

 

At its most basic, a 3D model is a set of point coordinates or vertices44, which describe the 

structure of the surface of a 3D object, known as a mesh. Each vertex can have properties, 

such as a normal, which describes the direction it is facing (i.e. the outside of the surface), 

and also include UV map coordinates which describe how textures are projected over the 

model's surface. A 3D model can also be associated with descriptions of its surface properties, 

known as materials, which are used by the engine to light and render it. Historically this might 

have been as simple as a square raster image tiled over the surface of the model to describe 

its colour, but in modern 3D rendering can include many layers of information that are used to 

achieve physically accurate results when the surface is lit. This information is typically 

represented using texture maps, raster images which contain information describing a 

particular property such as how rough or smooth a surface is. This approach to creating 

 
42 Aras Pranckevičius, Releasing the Unity C# source code, 2018, 

https://blogs.unity3d.com/2018/03/26/releasing-the-unity-c-source-code/. 
43 Unreal Engine, Unreal Engine End User License Agreement For Creators, 2021, 

https://www.unrealengine.com/en-US/eula/creators. 
44 The singular form of vertices is vertex. 

https://blogs.unity3d.com/2018/03/26/releasing-the-unity-c-source-code/
https://www.unrealengine.com/en-US/eula/creators
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materials is known as physically-based rendering (PBR) and uses texture maps describing 

color (also known as a diffuse or albedo map), surface detail (known as normal maps), 

shadowing (ambient occlusion maps), roughness (or in some workflows glossiness), 

metallicness and specularity.  

 

 
Figure 6. These four texture maps have been used to apply a PBR material to a mesh in the 3D 

modelling software Blender 2.8. Material textures downloaded from freepbr.com. 

 

In combination, these maps allow the renderer to infer how light would bounce off that surface, 

and thus determine how to colour the pixels that represent that surface for a particular frame. 

Depending on the file format and workflow adopted, materials might be packaged with the 

geometry data or included as a sidecar file.  

 

There is an array of tools available to create engine-ready 3D models, with popular tools that 

we encountered including 3D Studio Max, Blender (the primary free and open source option 

in this domain), Houdini (which is specialised in procedural animation), Maya and ZBrush 

(which is specialised in sculpting). In addition to their own native formats, these tools are 

capable of importing and exporting 3D models in a variety of file formats in order to 

accommodate varied production workflows. Additional tools may be used in texturing 

workflows beyond widely used raster graphics editing tools like Photoshop and GIMP, such 

as the Substance toolset which is used for the creation of PBR materials. A 3D model suitable 

for usage in real-time 3D applications, particularly in an VR context, may be heavily optimised 

in order to improve performance. This typically involves reducing the complexity of geometry 

and lowering the resolution of texture maps. 

 

Given the relative novelty of 3D model file formats as a digital preservation research topic, we 

are not yet at a stage where community consensus of preservation suitable formats has been 
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reached, and a detailed comparison in the context of our research was beyond the scope of 

this project. The best resource at time of writing is the Library of Congress’ ‘Sustainability of 

Digital Formats’ website45, which includes a number of in-depth 3D file formats as part of an 

ongoing programme of reviews. Fragmentation in requirements from different user groups, 

and formats favoured by particular tools, means that 3D model formats are heterogenous and 

often domain specific. The more generic formats with support across many applications — of 

which FBX, a proprietary format owned by Autodesk, is particularly favoured in real-time 3D 

production — are so-called interchange formats, which often contain only partial 

representations of the content created in the authoring tool and require a degree of processing 

and configuration when imported into another tool. While there have been efforts to introduce 

open standards for 3D model file formats (for example, the COLLADA, U3D and X3D formats), 

adoption of these has been poor, perhaps due to the inherent challenge of keeping up with 

the fast-moving nature of the 3D graphics industry.  

 

In Table 5 below we offer a brief summary of selected file formats, which we identified as 

noteworthy during our research by their matching one or more of two criteria: 1) those that are 

frequently used in real-time 3D rendering applications and 2) those which are open standards. 

For each we give a brief description of the format, some preliminary notes on issues relating 

to their suitability for long-term preservation and, where applicable, point to their review in the 

Library of Congress’ ‘Sustainability of Digital Formats’ resource. 

 

Format Description Preservation Notes 

Wavefront 
OBJ/MTL 
 
 

OBJ is a simple interchange format 
for 3D geometry. An OBJ file can be 
accompanied by an MTL file 
describing material properties.  

While the most feature limited of the 
formats listed here (e.g. no support for 
animation), OBJ has a track record of 
long-term support across many 
applications. While the specification is 
public the licence it is released under is 
unclear and may be proprietary. 
 
LoC sustainability review: 
https://www.loc.gov/preservation/digit
al/formats/fdd/fdd000507.shtml 

FBX FBX is a proprietary format 
maintained by Autodesk and widely 
used as a 3D model interchange 
format in real-time 3D rendering 
applications. 

Widely adopted in real-time 3D engine 
workflows. The binary format has been 
partially reverse engineered by Blender 
Foundation for their own import/export 
tools, but its proprietary nature remains a 
concern for long-term preservation. 

X3D 
 
 
 

X3D is a royalty-free open standard 
which can represent 3D objects and 
scenes. The format is an ISO 
standard and has been in 
development by the Web3D 
consortium since the early 2000s. 

The format is not widely used in RT3D 
applications (neither Unity nor Unreal 
Engine 4 include X3D importers). 
Release of new versions of the 
specification is infrequent (the last 
ratified version, 3.3, was released in 
2015) which means its features are out 
of step with those of other formats such 

 
45 Library of Congress, Sustainability of Digital Formats: Planning for Library of Congress Collections, 

2021, https://www.loc.gov/preservation/digital/formats/. 

https://www.loc.gov/preservation/digital/formats/fdd/fdd000507.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000507.shtml
https://www.loc.gov/preservation/digital/formats/
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as FBX and glTF46.  
 
LoC sustainability review: 
https://www.loc.gov/preservation/digit
al/formats/fdd/fdd000490.shtml 

glTF 
 
 

glTF is a royalty-free open standard 
designed for the efficient transmission 
of 3D models and scenes. It is 
maintained by the Khronos Group. 
 
 
 

Primarily aimed at the web, adoption for 
real-time 3D applications seems likely if 
web-based RT3D continues to gain 
popularity. Tools supporting 
import/export are currently limited 
however. Monitoring will be required 
given priorities regarding transmission 
efficiency and the potential for 
introduction of lossy compression 
features (e.g. Draco47). 
 
LoC sustainability review:  
http://www.loc.gov/preservation/digita
l/formats/fdd/fdd000498.shtml  

Alembic 

 

 

The Alembic (.abc) format is a royalty-

free open standard used to store 

complex animated 3D geometry. It is 

maintained by Sony Pictures 

Imageworks and Industrial Light & 

Magic. 

This format is widely used in RT3D 
rendering and importing is natively 
supported in both Unity and Unreal 
Engine 4. As it only includes only the 
‘baked’ animation, it is not lossless with 
the respect to complex rendergraph 
present in source projects (e.g. in 
Houdini).  

Universal 
Scene 
Description 
(USD) 

A royalty-free open-standard 
designed as an interchange format for 
complete 3D scenes composed of 
many elements. Maintained by Pixar.  

Extent of adoption in RT3D is not known, 
but both Unreal Engine 4 and Unity 
support import of USD scenes.  

Table 5. Summary of RT3D relevant 3D file formats identified during our research. 

 

3.2. Real-Time 3D VR Applications 
 

RT3D VR applications (or builds) are the software that results from the development process 

described above, and is then used in the display of RT3D VR artworks. These applications 

are dependent on the software and hardware layers of a VR system, as described in 2. VR 

Systems. In this section, we discuss what constitutes a RT3D VR application and consider 

how they might be acquired. 

 

3.2.1. Application Packages 

 

An application is produced from a 3D engine project (see 3.1.1. Engines and Project Files) 

and usually contains a combination of executable code and packaged data arranged in a well-

defined directory structure. In most cases this will be the primary media used in the display of 

 
46 Leonard Daly, glTF/X3D Comparison, n.d., https://realism.com/blog/gltf-x3d-comparison. 
47 Draco, GitHub repository, 2021, https://github.com/google/draco. 

https://www.loc.gov/preservation/digital/formats/fdd/fdd000490.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000490.shtml
http://www.loc.gov/preservation/digital/formats/fdd/fdd000498.shtml
http://www.loc.gov/preservation/digital/formats/fdd/fdd000498.shtml
https://realism.com/blog/gltf-x3d-comparison
https://github.com/google/draco


 

28 

the work and can be seen as analogous to a master. A RT3D VR application (excluding one 

targeting WebGL — see notes below) will generally consist of: 

● One or more executable files (e.g. Windows Portable Executable on Windows, Mach-

O on MacOS). 

● Additional runtime libraries (e.g. Mono Runtime for Unity or the Ogg Vorbis audio 

decoder library). 

● Data files containing packaged assets (e.g. .pak files in Unreal Engine 4 and .resource 

files in Unity) 

 

The code component of the executable files is machine code compiled for the target platform, 

in order to maximise performance. Despite commonalities among CPU architectures on 

contemporary computing platforms (Windows, MacOS and Linux all utilise the x86-64 

architecture), this low-level code remains platform specific due to the use of system calls and 

other OS-specific references. Modern game engines, including Unity and Unreal Engine 4, 

allow cross-compiling for the creation of builds for different target platforms (e.g. Windows, 

MacOS, Linux, Android) from the same source project. While a build can only support one 

platform, it can support multiple 3D APIs and VR runtimes, providing these are supported by 

that host platform. Support for these will depend on the engine version and plugins in use 

when the application is built.  

 

RT3D applications built for the web use a different set of technologies from the standalone 

application builds described above, so that they can be run in a web browser. The artists we 

worked with during our research were not using these technologies, so our coverage of this 

area of RT3D VR is limited to a very broad overview. Web RT3D applications are built as code 

which can be executed by a web browser at runtime, such as JavaScript or WebAssembly, 

and use the WebGL 3D API instead of desktop APIs such as OpenGL and DirectX. The 

application package itself is also divergent from native RT3D builds in that its structure more 

closely resembles a website. Assets are typically not packaged and are instead stored in web-

friendly file formats such as OBJ and glTF, while code is stored in a human-readable format 

rather than a binary format (excluding WebAssembly code). 

 

3.2.2. Executing an Application 

 

Executing a RT3D VR application engages the layers of hardware and software described in 

2. VR Systems. The specification and features of these components can impact the 

characteristics of the VR experience in various ways such as frame rate, latency and image 

quality. In Table 6 below we briefly describe some of the key points of variability we have 

identified alongside notes on approaches to recording them. Monitoring these characteristics 

particularly could be useful in identifying problems with VR application performance or when 

assessing the impact of changes made to a VR system in the course of applying preservation 

techniques (e.g. migration or emulation). Thi summary is intended to offer a starting point for 

analysis of RT3D VR application execution; fully understanding the significance, 

documentation, and management of these characteristics will require further research. 
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Characteristic Description Measurement Approach 

Resolution Resolution describes the number of 
pixels rendered in each direction per 
frame (e.g. 1080x1920 or 2160×1200). 

This usually matches the native 
resolution of the target display device 
(i.e. HMD). Can be verified using 
capture software or hardware. 

Bit-depth Bit-depth describes the possible range 
of values in which color/luminance can 
be expressed.  Real-time 3D 
applications can support 8-bit or 10-bit 
per channel output, and can use the 
full dynamic range of 0-255 (or 0-1023 
for 10-bit) when connected to a 
suitable display device. 

Usually controlled with GPU driver 
utilities (e.g. NVIDIA Control Panel) 
but involves compatible OS 
components and suitable display 
equipment to be applied. Capture 
cards may provide an independent 
means of verification. 

Colour Space The colour gamut, gamma and white 
point for output frames. For real-time 
3D applications this is usually sRGB, 
which can be converted by TV 
equipment to the similar Rec. 709. 

Usually controlled with GPU driver 
utilities (e.g. NVIDIA Control Panel) 
but involves compatible OS 
components and suitable display 
equipment to be applied. Capture 
cards may provide an independent 
means of verification. 

Frame rate / 
Frame time 

Measurements of the speed with which 
frames are generated. Frame rate 
describes the number of frames 
created per second, while frame time 
is the amount of time taken to 
generate a frame. 

It is not clear how existing RT3D 

monitoring tools such as MSI 

Afterburner / RivaTuner Statistics 

Server interact with VR runtimes. 

Runtime specific tools such as Oculus 

Profiler and SteamVR Frame Timing 

Tool should be used instead. 

Latency Measurement of the time taken for 
physical input to be translated into 
output frames.  

We are not aware of any tools for 
measuring this for an arbitrary RT3D 
VR application, at time of writing.  

3D API Feature 
Level 

The set of shading related features 
supported by the 3D API, GPU and 
driver set, and targeted by a RT3D 
application. 

We are not aware of any tools for 
identifying feature level support for an 
arbitrary RT3D VR application. Must 
be identified by examining the source 
project. 

Internal Timing The clock according to which events 

unfold within the simulation of the 

virtual environment.  

Can only be identified from examining 

program code. This may cause issues 

where events are not coded to be 

framerate independent and thus 

become locked to processing speed48. 

Table 6. List of performance and rendering characteristics and approaches to their analysis and 

documentation. 

 

 
48 Construct, Delta-time and framerate independence, 2017, 

https://www.construct.net/en/tutorials/delta-time-and-framerate-independence-2 

https://www.construct.net/en/tutorials/delta-time-and-framerate-independence-2
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When installed on a system or run for the first time, additional local files may be created by a 

VR application to store configuration and saved state information. These may be stored within 

the application directory or elsewhere on the host system; identifying locations may require 

the use of system call tracing to identify write operations made by the software during 

execution49. 

 

3.3. Real-Time 3D VR Documentation 
 

Given the large number of hardware and software components, the separation between user 

experience and external environment, and the interactive nature of the medium, 

documentation is a potentially expansive topic in relation to real-time 3D VR. Our research 

has only really scratched the surface in terms of identifying how we might approach these 

novel documentation requirements. It seems likely that in the short term many existing tools 

and approaches from the fields of art conservation and digital preservation will be suitable to 

guide aspects of the documentation process. In particular, there is a well-established 

precedent for documenting technically complex, installation-based artworks in time-based 

media conservation50,51,52. We feel that approaches which have already been adapted for 

software-based artworks53,54 are particularly likely to be suitable with relatively little 

modification. This is due to the similarity of the core components encountered in VR artworks 

— such as computer systems, display hardware and custom software — and their 

manifestation in artwork characteristics. In this section we will briefly consider extensions 

required to existing methods that we identified during this research. This is not exhaustive and 

should be considered a starting point for further research. 

 

3.3.1. Acquisition Information Template 

 

In the first phase of our research, we identified that, as for any other artwork acquisition, we 

would need to gather sufficient information about VR artworks to make effective decisions 

about bringing them into a collection, the archiving of relevant components and planning for 

its long-term preservation. Given the number of medium specific questions which arose in 

scoping this, we identified a need for a tool to guide the information gathering process at the 

early stages of acquisition and so developed a document template for this purpose, partly 

informed by Tate’s acquisition template. This is designed to be completed by or in close 

collaboration with an artist prior to receiving media from the artist. We tested the template by 

inviting the artists we interviewed to complete it for a specific artwork. Version 1.00 of the 

 
49 An example of this approach can be found in: Tom Ensom, ‘Revealing Hidden Processes: 

Instrumentation and Reverse Engineering in the Conservation of Software-Based Art’, Electronic 
Media Review 5, 2018, https://resources.culturalheritage.org/emg-review/volume-5-2017-
2018/ensom/. 
50 Matters in Media Art, web page, 2015, http://mattersinmediaart.org/  
51 Guggenheim, Time-Based Media, n.d., https://www.guggenheim.org/conservation/time-based-

media. 
52 Smithsonian, Time-based Media & Digital Art, n.d., https://www.si.edu/tbma/. 
53 Tate, Software-based Art Preservation – Project, 2021, https://www.tate.org.uk/about-

us/projects/software-based-art-preservation. 
54 Guggenheim, The Conserving Computer-Based Art Initiative, n.d., 

https://www.guggenheim.org/conservation/the-conserving-computer-based-art-initiative. 

https://resources.culturalheritage.org/emg-review/volume-5-2017-2018/ensom/
https://resources.culturalheritage.org/emg-review/volume-5-2017-2018/ensom/
http://mattersinmediaart.org/
https://www.guggenheim.org/conservation/time-based-media
https://www.guggenheim.org/conservation/time-based-media
https://www.si.edu/tbma/
https://www.tate.org.uk/about-us/projects/software-based-art-preservation
https://www.tate.org.uk/about-us/projects/software-based-art-preservation
https://www.guggenheim.org/conservation/the-conserving-computer-based-art-initiative
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template is available on Tate’s Preserving Immersive Media project page55. Further 

enhancement of the template has been carried out by Savannah Campbell and Mark Hellar 

and was presented at AIC 201956.  

 

3.3.2. User-Perspective Video Capture 

 

An effective way of capturing the experience of interacting with a real-time 3D VR artwork in 

a software-independent way is to capture the perspective of the user as video. User-

perspective video capture then, is the recording of moving image frames as perceived by the 

user of the VR system through, for example, an HMD. We identified two approaches that can 

be taken to this kind of capture: fixed-view and 360 degree. Fixed-view video is captured from 

the perspective of the virtual camera as the user moves. Both rotational and positional 

movements become fixed to those that were carried out during the period of recording. This 

kind of video can be captured before or after the compositor carries out VR runtime specific 

processing. Pre-compositor capture is undistorted and without frame interpolation, while post-

compositor capture will include the effects of these runtime processes. 

 

An alternative approach is to capture 360-degree video from the perspective of the user, which 

captures the entirety of the users surroundings and so allows rotational tracking to be 

maintained in the resulting media. This is interesting not only as a documentation technique, 

but as a preservation approach, as it can offer a video-based surrogate for RT3D VR 

experiences which do not use positional tracking (also known as ‘on-rails’). This 360 video 

version does not have the fixed dependency on a specific real-time 3D rendering technology, 

as the output of the capture process is simply video data which can be played back in a variety 

of players (see 4. 360 Video). Features for capturing 360 video from real-time 3D 

environments are present in both the Unreal Engine 4 and Unity editor software. Claudia 

Roeck has identified and tested a third-party tool for capturing 360 video in compiled UE4 and 

Unity real-time 3D applications called Surreal Capture57. The primary limitation of the 360 

video capture approach is that positional tracking and other forms of interactivity beyond 

rotational tracking are lost. Additionally, a by-product of bypassing the normal fixed field-of-

view player camera is that certain ‘screen space’ visual effects will not be captured (e.g. 

vignetting, light shafts, motion blur)58.  

 

Capturing both fixed-view and 360 video in a real-time 3D engine is resource intensive and 

can generate very large volumes of data if captured in an uncompressed form. Strain on the 

host system can be eased by utilising dedicated encoding hardware (e.g. capture cards or 

NVIDIA’s NVENC feature available on some GPUs), freeing up the GPU to focus on rendering. 

Decisions over appropriate video encoding are similar to those when working in other video 

 
55 Tate, Preserving Immersive Media – Project, 2021, https://www.tate.org.uk/about-

us/projects/preserving-immersive-media. 
56 Savannah Campbell and Mark Hellar, ‘From Immersion to Acquisition: An Overview Of Virtual 

Reality For Time Based Media Conservators’, Electronic Media Review 6, 2019, 
https://resources.culturalheritage.org/emg-review/volume-6-2019-2020/campbell/. 
57 Claudia Roeck, Capturing a VR-executable as a 360-degree video, forthcoming report. 
58 Gavin Costello, Capturing Stereoscopic 360 Screenshots and Movies from Unreal Engine 4, 2016, 

https://www.unrealengine.com/en-US/tech-blog/capturing-stereoscopic-360-screenshots-videos-
movies-unreal-engine-4 

https://www.tate.org.uk/about-us/projects/preserving-immersive-media
https://www.tate.org.uk/about-us/projects/preserving-immersive-media
https://resources.culturalheritage.org/emg-review/volume-6-2019-2020/campbell/
https://www.unrealengine.com/en-US/tech-blog/capturing-stereoscopic-360-screenshots-videos-movies-unreal-engine-4
https://www.unrealengine.com/en-US/tech-blog/capturing-stereoscopic-360-screenshots-videos-movies-unreal-engine-4
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production contexts (e.g. chroma subsampling, bitrate, compression), but care should be given 

to ensure encoding matches the frames output by the GPU as closely as possible for an 

accurate capture (e.g. colour space, bit-depth, framerate). Currently, the value of capture is 

impeded by the lack of transparency over where software tools actually capture frames in the 

rendering pipeline. Using a dedicated video capture card, capable of intercepting the GPU 

output, could improve this situation, but it is unclear whether such hardware could capture 

HMD-targeted output in this way. Further research is required to better understand how we 

might effectively carry out this kind work and whether available tools are fit for purpose. 

 

Beyond capturing what a user sees, we have also identified a need to capture interaction as 

it occurs within the physical installation space. Understanding how interaction has occurred in 

the past offers contextual insight into how that work was presented and received. While 

photographic methods of documentation will be successful in capturing VR artwork 

installations to some extent, the dynamic and interactive nature of VR points towards the 

importance of video as an extension of this. Captured simultaneously with user-perspective 

documentation, this provides one way of connecting the users virtual experience with their 

movements in physical space. Tests during a hackathon at iPRES 201959 demonstrated that 

capture tools such as Brekel OpenVR Recorder provide one way of documenting this kind of 

interaction, although further research is required to understand how the outputs could be used. 

 

  

 
59 Tom Ensom, Jack McConchie, Dragan Espenschied and Claudia Roeck, Understanding the 

Variability of Virtual Reality Artworks, hackathon at iPres 2019, 
https://ipres2019.org/static/pdf/iPres2019_paper_154.pdf. 

https://ipres2019.org/static/pdf/iPres2019_paper_154.pdf
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4. 360 Video 
 

360 video is a video format in which every direction of view is available to the viewer. Though 

the direction of view is unlimited, in most circumstances the viewing position in space is either 

fixed or on a predetermined “on rails” path. In this section, we will explore how 360 video is 

generated from camera capture, the methods employed to generate a three dimensional 

experience from the resulting files, and how spatial audio can be represented.  

 

4.1. 360 Video Production Materials 
 

4.1.1. Camera Capture  

 

360 video can be produced from two distinct workflows, as a capture from a real-time 3D 

engine (see 3.3.2. User-Perspective Video Capture) or captured from a camera or array of 

camera lenses. Camera capture can result in monoscopic or stereoscopic footage. 

Monoscopic 360 video is captured from a single point of view, creating an identical view in 

each eye. It is typically captured with dual fisheye lenses, arranged back-to-back, each 

capturing half of the 360 degree field of view. Stereoscopic 360 video employs an array of 

lenses to capture material from multiple viewpoints which, after processing, provides a slightly 

different point of view for each eye. This creates an illusion of depth and a potentially more 

realistic experience.  

 

 
Figure 7. Image taken with a monoscopic 360 camera showing fisheye images corresponding to each 

lens.  

4.1.2. Stitching 

 

In both of these examples, raw video data from the camera captures have video streams that 

must be stitched together to produce viewable video content. There are several software 

programs that undertake the process of stitching, and a camera manufacturer might bundle 
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their own proprietary software in order to undertake this. There are also third-party options 

available, which contain templates of commonly used lens arrays and in some cases can 

automatically detect camera layouts. The process of stitching involves detecting the 

overlapping edges of footage in order to combine them into a single file (monoscopic) or a 

single file for each eye (stereoscopic). Given that overlapping pixels are blended and 

discarded, the process of stitching is an inherently lossy one and is subject to inaccuracies 

that can cause artefacts. There is potential for increased accuracy of stitching algorithms as 

technology develops, therefore there may be a case for archiving raw camera footage 

alongside stitched footage for the purposes of stitching in the future. The storage requirements 

for this are potentially vast however, particularly in the case of multi camera stereoscopic 

capture due to large resolution files with high percentage of pixel overlap. 

 

 
Figure 8. GoPro Odyssey multi camera rig and diagram illustrating a section of the image from each 

lens generating a stereoscopic image. Image credit: Mystery Box, 2017, 

https://www.mysterybox.us/blog/2017/1/31/shooting-360-vr-with-gopro-odyssey-and-google-jump-vr. 

 

4.1.3. Projection Format  

 

The video files that result from the stitching process are stored in a 2D video format (planar), 

with a rectangular aspect ratio. The method employed to store the 3D video information in a 

planar video file is referred to as the projection format.  

 

360 video files are played back using specialised pieces of software known as 360 video 

players. These players are real-time 3D applications (see 3.2. Real-Time 3D VR Applications) 

capable of decoding video and mapping it onto the interior of a 3D object, the shape of which 

corresponds to the chosen projection format (e.g. a sphere for equirectangular or a cube for 

cubemap). A UV map (see 3.1.2. Scenes and Assets) or equivalent information, which is 

specific to this projection format, tells the 360 video player how to correctly distribute the video 

pixels over the interior surface of the 3D object. During playback the viewer of the 360 video 

is positioned at the centre of the 3D object and the mapped video is viewed from this position. 

Players may be standalone pieces of 3D software or may be authored using RT3D engines 

such as Unity or Unreal Engine.  

 

The most common projection format is called equirectangular projection, familiar to us as the 

type of geometric distortion used to represent the surface of the earth in a 2D form. The 

inherent distortion of the pixels in their planar equirectangular form is referred to as curvilinear. 

One downside to this projection type is that the top and bottom of the image use a 

disproportionately large area of pixels in comparison to that of the centre of the image — 

https://www.mysterybox.us/blog/2017/1/31/shooting-360-vr-with-gopro-odyssey-and-google-jump-vr
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varying pixel density. Note in Figure 9 below, how a large proportion of the pixels are used on 

the ceiling and table which have relatively low detail in comparison to the central section of 

the image where most of the detail is. This is particularly inefficient given that the ceiling and 

table areas are mostly in the user's periphery vision where detail perception is minimal. This 

inefficiency has led to the use of cubemap projection, where the 360 Video file is projected 

onto the inside surface of a cube. This projection type has more even pixel density than 

equirectangular projection, though density still varies to a lesser degree over the cube faces.  

 

 
Figure 9. The image from Figure 7 in equirectangular format. 

 

Cubemap projection types allow for more efficient use of compression codecs than 

equirectangular, since the inherent curvilinear distortion in equirectangular video introduces 

distortion into the representation of the path of a moving object. One of the ways in which 

compression attempts to minimise file sizes and data rates is by applying temporal 

compression, which is based upon the principle that from one video frame to the next most 

pixels remain the same, though the point of view may have changed slightly, or an object may 

have moved within the frame. Instead of redrawing the entirety of the pixels, motion 

compensation is used to represent the difference between each frame instead, using less data 

to do so. This process is at its most efficient when movement of perspective or object is in a 

straight line, and hence is hindered by curvilinear distortion60.  

 

A further development in projection format is the equi-angular cubemap (EAC) — in this 

projection type, a distortion mesh (see 3.1.2. Scenes and Assets) is introduced onto each face 

of the cube, resulting in each degree of viewing angle being assigned an equal number of 

pixels, creating more even pixel density61. Other projection types are being developed, such 

 
60 Rabia Shafi, Wan Shuai and Muhammad Usman Younus, ‘360-Degree Video Streaming: A Survey 

of the State of the Art’, Symmetry 12(9), 2020, https://doi.org/10.3390/sym12091491. 
61 Chip Brown, Bringing pixels front and center in VR video, 2017,  

https://blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-video/.  

https://doi.org/10.3390/sym12091491
https://blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-video/
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as Facebook’s pyramid projection format62, a development of the cubemap but a pyramid 

shape is used in place of the cube. 

 

 
Figure 10. Representation of the rendering of equirectangular (top) and cubemap (bottom) projection 

types. In this process, a stored 360 image (left) is mapped onto a suitable 3D geometry primitive 

(centre), resulting in a projected image viewable with 3DoF from the centre of the primitive (right). 

 

4.2. 360 Video Audio  
 

Audio accompanying 360 video can be either be of the fixed mono/stereo type, where audio 

channels are played through a user’s headphones irrespective of the position of the head, or 

it can use the position of the HMD to calculate a binaural mix from a multitrack spatial 

recording, in real time, relative to the position of the head. This gives the impression of the 

sound sources changing position relative to the video, potentially creating a more immersive  

soundscape.  

 

4.2.1. Order of Ambisonics  

 

In the case of 360 video captured from a camera with accompanying spatial audio, it is likely 

to be recorded by an ambisonic microphone — which in its simplest form (first order, or 4-

channel) uses an array of four microphone capsules to record 360 degrees of audio. Second 

order (or 9-channel)  ambisonics employs the same techniques but achieves improved spatial 

resolution with 9 microphones, while third order (or 16-channel) ambisonics uses 16 

microphones for further resolution.  

 

 
62 Evgeny Kuzyakov and David Pio, Next-generation video encoding techniques for 360 video and 

VR, 2016, https://engineering.fb.com/2016/01/21/virtual-reality/next-generation-video-encoding-
techniques-for-360-video-and-vr/. 

https://engineering.fb.com/2016/01/21/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://engineering.fb.com/2016/01/21/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
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4.2.2. Ambisonic Formats  

 

This audio in its raw, recorded form is referred to as ambisonic A format. For this audio to be 

embedded into a video file, it undergoes processing to generate B format, where the raw audio 

from the capsules is converted to four audio files that represent the X, Y and Z spatial axes 

and W, overall amplitude. B format represents the captured space or sound field in an 

intermediate form for decoding- a fundamental principle is that it is speaker agnostic and can 

be decoded for a variety of speaker arrays. The conversion from A to B format is unique for 

each microphone, based on microphone make, model and individual capsule calibration. 

Software to undertake this process (often a VST plugin for a digital audio workstation) is 

therefore provided by the manufacturer. Some microphone arrays are available that record 

natively into B format, though these are less common.  

 

4.2.3. Head-related Transfer Functions 

 

In VR, B format ambisonics are decoded by a head-related transfer function (HRTF) to 

generate a real time binaural mix. An HRTF is an algorithmic process that models the human 

head and ears within a sound field recording, and approximates what a pair of human ears 

would hear within that space at a given orientation. It undertakes several key calculations to 

do this, such as: calculating the time difference taken for a sound to reach each ear; calculating 

the diffraction of sound waves caused by the head; and sound waves heard through being 

absorbed into the head and chest. This is performed in real time by the player, taking positional 

input from the HMD. Several data sets for the HRTF algorithm exist, based on averaged 

characteristics of human head and ear sizes and shapes. Whilst some data sets allow for 

adjustments of head size and ear spacing to accommodate differences in head shape and 

sizes, the calculations do not achieve perfect accuracy.  

 

4.2.4. Format Conventions  

 

Care must be taken in the preservation of ambisonic audio to note the specific conventions 

used to generate the B format files, as these impact how it is played back. B format files can 

be placed in different orders according to various conventions such as Furse-Malham, ACN 

and SID. Furthermore, to achieve the correct spatialisation the files are normalised in relation 

to each other according to various conventions such as maxN or SN3D. Two prominent 

exchange formats exist, FuMA (Furse-Malham) prescribes the channel ordering WXYZ and 

maxN normalisation, whilst AmbiX (Ambisonic eXchange) prescribes WYZX (ACN) ordering 

SN3D normalization. Video containers are agnostic to these conventions and we rely on file 

metadata to accurately reflect the scheme used to ensure that a playback device is able to 

correctly interpret the files.  

 

4.3. 360 Video File Types & Metadata  
 

4.3.1. Aspect Ratio and Resolution  
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In storage, 360 video file formats show similar characteristics to those of planar video. The 

aspect ratio of monoscopic video is commonly 2:1, which relates to 180 degrees of vertical 

vision and 360 degrees horizontal. The resolution of the stored file is often higher than that 

planar video — considering the viewable area of the video is 90 degrees and hence around 

25% of the entire image, a 360 video would have to have four times the resolution of a planar 

video to achieve comparable levels of pixel density. Pixel resolution is often higher still in 

stereoscopic, as images for each eye are stored either in a side by side (SBS) or over/under 

(OU) format. This requires a further doubling of the image resolution, meaning that to view a 

stereoscopic image with comparable quality to a 1920x1080 planar video file, a horizontal 

resolution of approximately 16000 pixels would be required in an SBS file.  

 

4.3.2. Frame Rates 

 

The frame rate experienced by a VR user is a combination of the video frame rate and the 

refresh rate of the HMD. Smooth playback is potentially impacted by a low frame rate, latency 

in the VR tracking and rendering system, and to some extent the content of the video — high 

contrast vertical lines will create more visible motion artefacts such as ghosting than a scene 

without fine detail. Because of the wide virtual viewing area and the ability for the user to 

quickly rotate the head over large virtual areas of video, motion artefacts and latency can be 

experienced either consciously or subconsciously at higher frame rates than the equivalent 

frame rate of planar video. The study of VR sickness is complex and is thought to depend on 

many factors, but latency has been identified as one contributing factor63. Whilst Oculus 

suggests a minimum frame rate of 30 frames per second (FPS) for 360 video in its guidelines 

for content64, it has been argued that higher frame rates will bring an improvement in quality 

should other factors such as storage or bandwidth allow.  

 

4.3.3. File Sizes 

 

High frame rates, large resolutions and stereoscopic images all combine to cause a significant 

increase in file sizes compared to planar video in similar formats. As a result, compression is 

often employed in playback to address issues of streaming bandwidth and storage — 

especially in the case of untethered devices such as the Oculus Go which is limited to 32GB 

or 64GB of onboard storage. At the time of writing, there are no specific codecs for 360 video 

— H.264 and H.265 are commonly employed. It is likely that a compromise between 

compression level, frame rate and resolution will have to be reached, optimised for the visible 

characteristics of the content and minimising the corresponding artefacts.  

 

As online streaming becomes more commonplace, Scalable Video Coding is being utilised to 

maximise visible quality whilst minimising data bandwidth65. In this technique, each area of 

 
63 Eunhee Chang, Hyun Taek Kim and Byounghyun Yoo, ‘Virtual Reality Sickness: A Review of 

Causes and Measurements’. International Journal of Human–Computer Interaction 36 (17), 2020, 
https://doi.org/10.1080/10447318.2020.1778351. 
64 Marcos Carranza, Introduction to 360 Video for Gear VR, 2017, 

https://developer.oculus.com/blog/introduction-to-360-video-for-gear-vr/. 
65 Rabia Shafi, Wan Shuai and Muhammad Usman Younus, ‘360-Degree Video Streaming: A Survey 

of the State of the Art’, Symmetry 12(9), 2020, https://doi.org/10.3390/sym12091491. 

https://doi.org/10.1080/10447318.2020.1778351
https://developer.oculus.com/blog/introduction-to-360-video-for-gear-vr/
https://doi.org/10.3390/sym12091491
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video (in the example of cubemap projection, each face of the cube) has a subset of videos 

with greater compression and hence smaller file sizes/bandwidth. The area being viewed is 

streamed in maximum possible quality whilst the video in the periphery areas is streamed from 

a file of lesser quality.  

 

4.3.4. Metadata 

 

Due to the increased number of variable parameters in 360 video over planar video, there are 

increasing demands on the file metadata to accurately describe projection type, distortion 

map, and audio convention. At the time of writing, standards are being expanded to include 

capture information from the camera such as GPS position, direction of motion and other 

sensor data. Dominant capture standards at this time are the GoPro metadata format (now 

renamed to General Purpose Metadata Framework or GPMF) and the Camera Motion 

Metadata Spec. The GPS information can be used to situate the footage within databases 

such as Google street view, and the motion information can be used to enhance post 

processing procedures such as stitching and image stabilization. For playback, there is a 

spatial media metadata standard put forward by Google, and a corresponding spatial media 

metadata injection tool66. One particularly promising aspect for preservation is that it proposes 

to describe the relationship between video file and projection type mathematically within the 

metadata, adding a degree of self description. At the time of writing it is too early to comment 

on how widely it has been adopted. Apple now offers the ability to inject spatial metadata 

information with the Compressor tool. In absence of a metadata standard, some players had 

previously interpreted a string of characters from the file name- such as “_LR.mp4” for 

Left/Right stereoscopic panoramic video67. 

 

4.4. 6DOF & Volumetric Video 
 

One of the primary differences between 360 video VR and RT3D VR is that in 360 video 

playback interactivity is limited to rotation left and right, rotation up and down, tilt left and right 

(3DoF). Moving the head from side to side or up and down positionally does not result in any 

change in view, given that the camera’s position in a space is fixed as the video is pre-recorded 

from a fixed perspective.  

 

There are several attempts underway in the VR industry to make limited 6DoF possible for 

360 video, such as Adobe’s project Sidewinder or HTC’s 6DOF Lite. Some of these methods 

make use of a depth map which can be generated in some cases by stitching programs or 

capture hardware, whilst others, such as HTC’s 6DOF Lite are able to generate a limited 6DoF 

experience from existing stereoscopic video by generating depth information in real-time. 

Tools to perform these functions are blurring the boundaries between 360 video players and 

real-time 3D engines, as more complex features of RT3D rendering such as vertex 

displacement are employed. 

 

 
66 Google, Spatial Media, 2018, https://github.com/google/spatial-media. 
67 Oculus, Oculus Android VR Media Overview, n.d., 

https://developer.oculus.com/documentation/native/android/mobile-media-overview/. 

https://github.com/google/spatial-media
https://developer.oculus.com/documentation/native/android/mobile-media-overview/
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The similarities with RT3D rendering grow further still with volumetric capture, a technique that 

uses an array of cameras to capture a scene from every angle, hence allowing a subject or 

volume to be viewed from any angle. It differs from common 360 video formats in that it is 

often filmed from the outside and might be used to capture the performance of a human for 

example. It has similarities to the techniques used in photogrammetry, a capture technique 

which can derive a 3D representation of an object using photographs taken from multiple 

perspectives, but is carrying out this process of conversion from still images frames to point 

cloud 3D data in real time. At the time of writing, the amount of storage and computational 

power required put it outside the scope of this report.   
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5. Suitability of Existing Preservation Strategies 
 

In this section we will use the insights gained in the preceding sections to explore approaches 

to the acquisition and long-term preservation of VR artworks. Ideally, these approaches would 

allow us to prevent loss of access to a VR artwork due to the failure and obsolescence of 

components. While these processes are something time-based media conservators contend 

with for any technology-based artwork, our research indicates that their effects may be 

particularly severe for VR artworks because of the following factors:  

● Frequency of failure: VR hardware is handled frequently when a work is installed (i.e. 

HMDs, controllers) making it more likely to be damaged. 

● Rate of change: Commercially available VR hardware changes very rapidly, with 

devices being removed from sale within 5 years of release. 

● Dependency on manufacturer-specific software: In addition to the complex 

software and hardware interdependencies familiar from software-based artworks, VR 

applications typically require manufacturer-specific software to be present in order to 

access that manufacturer's VR hardware devices. Support for this software layer has 

to be built into the application when it is created if it is to support that hardware. 

 

In the following sections we will explore factors we have found which are likely to complicate 

the process of acquiring and preserving VR artworks when compared to the more familiar 

forms of video and software-based art. We consider processes at point of acquisition and 

preservation strategies, the latter drawing on established concepts from conservation 

including stockpiling, hardware migration, emulation and code migration as starting points for 

discussion. We do not propose that these approaches are mutually exclusive, but rather that 

could be used in combination to maximise chances of providing long-term access to VR 

artworks. 

 

5.1. Acquiring VR Artworks 
 

5.1.1. Acquiring Real-Time 3D VR Artworks 

 

For real-time 3D VR artworks, the point of acquisition is the time to gather together materials 

and documentation that will serve to support the work's life in the collection. Compiled real-

time 3D VR applications are similar to those associated with other forms of software-based 

art, and many of the approaches we have developed for software-based art can be applied. 

Based on procedures in use at Tate, we would expect materials to be delivered by the artist 

(or generated at point of acquisition) to include: a computer system and other hardware 

suitable for running the artwork (or specification for sourcing an equivalent); executable 

software; source materials; and documentation. 

 

As a starting point for acquiring a RT3D VR software application, we would typically test the 

software received using either an artist-supplied computer system or a new computer system 

created from artist-supplied specifications. Due to the complexity of VR systems and the many 
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variables involved in correctly setting up and running an application, it will be beneficial for the 

artist (or someone else familiar with the artwork) to be present for this. This is an opportunity 

to begin to learn how the work functions, how it should be installed, and how it might be 

preserved. This is also the point at which a backup system would be created. Tate’s existing 

best practice guidelines for software-based artworks is to ensure there are two functional 

reference systems available for a specific artwork. We therefore recommend that those aiming 

to preserve VR artworks source and configure two sets of reference hardware when an artwork 

is acquired. This is based on the principle of having a backup system for display in case of 

failure, and a reference system for monitoring the impact of changes. The process of creating 

another version of the system is a useful tool in understanding the artwork and validating 

dependencies. 

 

As an additional backup of the software environment — and again, a standard part of software-

based artwork preservation at museums such as Tate68 and the Guggenheim69 — disk images 

can be created from storage media of the computer system. When captured from a computer 

system, we can consider the disk image a representation of a complete software environment, 

incorporating an operating system, installed programs and user data. This image is useful not 

only because it encapsulates all the data contained, but because we can use it as a basis for 

emulation or virtualisation as a means of accessing these environments in the long-term (see 

5.4. Emulation and Related Approaches). This is a well-established approach to preserving 

software environments in digital preservation and time-based media conservation, and 

resources and guidance can be found elsewhere70,71,72. We propose that this need be met by 

creating raw disk images of the storage media contained in the reference systems acquired 

or created. The resulting disk images ensure the complete software environment is captured 

and can then be used as a means of cloning the content to new storage media and as the 

basis of future emulation and virtualization work. 

 

Supplementing this, it is beneficial to acquire builds of the software for as many different 

platforms as possible, to open up further options for keeping the software accessible. Building 

for Windows, MacOS and Linux operating systems increases the chances that a suitable 

software environment can be recreated in the future. Target VR runtimes and 3D APIs also 

need to be considered at this time, as support for a specific runtime or API must be included 

when the application is built. As noted in 2.2.1. VR Runtimes and 2.2.3. 3D APIs, targeting 

open standards such as OpenXR and Vulkan is likely to open up the largest number of options 

for hardware migration (see 5.5. Code Migration and Related Approaches for further 

discussion). However, changing the runtime or API can have significant effects on the 

characteristics of the software, so any new builds should be carefully tested, ideally in 

collaboration with the artist or studio. 

 
68 Tate, Software-based Art Preservation – Project, 2021, https://www.tate.org.uk/about-

us/projects/software-based-art-preservation.  
69 Guggenheim, The Conserving Computer-Based Art Initiative, n.d., 

https://www.guggenheim.org/conservation/the-conserving-computer-based-art-initiative. 
70 MoMA, Disk Imaging, resources from Peer Forum I: Disk Imaging, 2017, 

https://www.mediaconservation.io/disk-imaging. 
71 Eddy Colloton, Jonathan Farbowitz, Flaminia Fortunato and Caroline Gil, ‘Towards Best Practices 

In Disk Imaging: A Cross-Institutional Approach’, Electronic Media Review 6, 2019, 
https://resources.culturalheritage.org/emg-review/volume-6-2019-2020/colloton/.  
72 Tom Ensom, Disk Imaging Guide, 2021, https://www.tate.org.uk/file/disk-imaging-guide-pdf.  

https://www.tate.org.uk/about-us/projects/software-based-art-preservation
https://www.tate.org.uk/about-us/projects/software-based-art-preservation
https://www.guggenheim.org/conservation/the-conserving-computer-based-art-initiative
https://www.mediaconservation.io/disk-imaging
https://resources.culturalheritage.org/emg-review/volume-6-2019-2020/colloton/
https://www.tate.org.uk/file/disk-imaging-guide-pdf
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Acquiring source materials for software-based art is important for preservation purposes73, 

allowing the migration or modification of the software in order to maintain access in a changing 

technical environment. Source materials associated with VR applications pose challenges due 

to the complex processes and toolchains involved in production. This may be work carried out 

by a team, may involve the use of many distinct software tools and may involve multiple format 

conversions before assets are used in an engine. The capture and archiving of production 

environments as disk images may offer a pragmatic solution. This could be approached in two 

ways. The first is to disk image computers used in production directly. While providing the best 

way to ensure a complete capture, the indiscriminate nature of this approach results in the 

capture of all programs and data installed on the target machine, which may include 

unnecessary and/or personal data that would not be suitable for archiving. The second 

approach is to acquire the engine project (essentially a structured directory) and recreate the 

production environment on a physical or virtual machine by installing the appropriate engine 

binaries and testing the configuration. This is less invasive than the first approach and would 

reduce the amount of data that would have to be stored, but risks incomplete capture if not 

thoroughly tested (e.g. by recompiling the software and comparing it to the artist-supplied 

software). Whether it is useful to acquire asset production materials (i.e. projects and files 

associated with modelling, texture painting, material definition animation and other workflows) 

remains an open question. While having access to these would allow for more export options 

in the future and avoid problems with limited export options in engines, gathering and caring 

for them would have significant resource implications for the institution taking them on. 

 

Documentation of real-time 3D VR artworks is an area we have not thoroughly explored in this 

report. However, the Acquisition Information Template and capture approaches discussed in 

3.3. Real-Time 3D VR Documentation can be used as a starting point for RT3D VR-specific 

documentation work. Further research is required to understand additional forms of 

documentation which might find use in the conservation of software-based artworks. For the 

time being, we recommend that institutions work closely with the artists throughout the 

acquisition process to ensure that the materials retained are complete and well documented.  

5.1.2. Acquiring 360 Video VR Artworks 

 

360 video utilises the same container formats and compression codecs as planar video. File 

types will be familiar to those working in video preservation and well-established preservation 

strategies74 will broadly apply. During the acquisition process it is common to collect a 

compressed playback copy of an artwork alongside a primary copy75. The primary copy should 

ideally be uncompressed or have minimal compression and this principle applies directly to 

video captured from RT3D engines. When collecting 360 video from camera capture, we are 

faced with the extra potential choice of collecting the raw camera output for restitching at 

higher quality in the future. At the time of writing, many consumer grade 360 video cameras 

 
73 Deena Engel and Glenn Wharton, Reading between the Lines: Source Code Documentation as a 

Conservation Strategy for Software-Based Art, Studies in Conservation 59 (6): 404–15, 2014, 
https://doi.org/10.1179/2047058413Y.0000000115. 
74 Matters in Media Art, Sustaining Media Art, n.d., http://mattersinmediaart.org/sustaining-your-

collection.html. 
75 For digital video, the primary copy is typically a file in a high quality, stable format which is used for 

creating additional preservation exhibition copies. 

https://doi.org/10.1179/2047058413Y.0000000115
https://doi.org/10.1179/2047058413Y.0000000115
https://doi.org/10.1179/2047058413Y.0000000115
http://mattersinmediaart.org/sustaining-your-collection.html
http://mattersinmediaart.org/sustaining-your-collection.html
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will compress in real time during recording and store files in mp4 format with h264 codec. 

Post-stitching, the primary file may be edited and provided for acquisition in an intermediary 

format such as ProRes, and hence the primary material may be in a more lossy codec than 

the intermediary. An important point here is that because the stitching and editing process is 

potentially lossy and can create artefacts, the compressed camera files could still contain more 

accurate visual information than the intermediary, potentially making the case for them as a 

preservation format. 

 

Extra care should be taken to ensure that the metadata accurately describes the projection 

format and spatial audio convention. As with other video types, checking for consistent 

playback across a variety of players and HMDs is a useful tool in checking for anomalies or 

potential areas for error. Because of the relatively fast paced development of headsets, a 

regular maintenance activity of playing the material on the newest generation of headset is 

advisable to provide early warning of obsolescence or need for migration. An HMD might be 

experienced slightly differently by different users, and in combination with their inherent 

distortion due to the use of wide-angle lenses, some degree of quality control is likely to be 

better undertaken on a calibrated monitor in combination with a headset. 

 

At the time of writing, it is unclear how depth maps may be integrated into 360 video though 

software from Kandao is able to generate depth information at the stitching phase76 and it is 

reasonable to expect that players may offer the ability to generate real time depth maps in the 

future77. The impact this has on the experience of the work should be considered and 

documented. 

 

5.2. Hardware Stockpiling 
 

An intuitive first response to the risks of hardware failure and obsolescence is to securely store 

digital objects78 and stockpile suitable hardware. Stockpiling has well-established precedent 

in time-based media conservation, and alongside ongoing collaboration with specialised 

communities outside the museum, is one of the primary strategies for ensuring long-term 

access to CRT monitors for Tate’s large collection of video art. However, applying the same 

logic to VR system hardware raises many difficult to answer questions. Given the short 

lifespans of interactive equipment used in public galleries and Tate’s mandate to care for 

artworks in perpetuity, how many pieces of hardware is enough? Given the relatively small 

number of VR artworks likely to be acquired by any one institution (this remains an emerging 

medium), how can we justify the considerable financial outlay of acquiring such a quantity of 

hardware? Given that VR-specific hardware like HMDs and tracking systems are contingent 

 
76 Mic Ty, Kandao Obsidian 3D 360 cameras can now export a depth map, 2016, 

https://360rumors.com/kandao-obsidian-3d-360-cameras-can-now-export-depth-map/. 
77 Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, and James Tompkin, 

‘MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images’, at European 
Conference on Computer Vision, 2020, http://visual.cs.brown.edu/projects/matryodshka-webpage/.  
78 As we have not identified any issues relating to the effective archival storage of digital materials that 

are unique to VR, this topic will not be addressed further in this report. It is worth noting however that 
virtual reality artwork binaries and project files, as well as disk images, can present very large 
volumes of data. 

https://360rumors.com/kandao-obsidian-3d-360-cameras-can-now-export-depth-map/
http://visual.cs.brown.edu/projects/matryodshka-webpage/
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on specific computer hardware, what would be required to stockpile suitable computers as 

well?  

 

The model of stockpiling and specialist repair that museums have employed to maintain 

access to CRT television technology has worked thus far because these technologies were 

widely used during the time of their production and sale. The same could not be said for VR 

hardware at this time, which despite recent interest remains relatively niche. It is currently not 

clear how easy it would be to source spare parts or service manuals in the long term, or what 

specialist support might be available. Based on the challenges identified here, the stockpiling 

and maintenance of a pool of VR hardware does not seem to be a practical option for 

maintaining long term access to VR artworks. However, ensuring access to at least two sets 

of hardware for any one artwork, as described in the preceding section, does seem a sensible 

short-term measure. Whilst stockpiling larger quantities of hardware might seem to solve a 

problem, we expect that all hardware will fail eventually. In combination with budget and space 

restrictions, other preservation strategies are necessitated. 

 

5.3. Hardware Migration 
 

If replacement of failed hardware is not possible with like-for-like hardware, we can instead 

consider replacement with newer hardware — a process known as hardware migration. For 

example, we might hope to run an old VR application with a contemporary HMD and tracking 

system. Based on our research, we feel that there is a high likelihood of these kinds of changes 

resulting in loss of the characteristics that define an artwork, or the loss of access to a 

particular VR artwork altogether. We can look at the impact of changing HMD as an example. 

At best, this might result in the loss of the distinctive character of the original HMD (e.g. the 

lower resolution panels and restricted field-of-view found in earlier models), which may or may 

not be significant for that particular artwork. At worst, it might result in the loss of functionality 

altogether, due to the replacement HMD lacking software support for communication with the 

VR application — a newer HMD is likely to require the use of new drivers, APIs and/or 

runtimes, support for which may not have been built into the application. 

 

As noted earlier in this report, these risks can to some extent be lowered by creating multiple 

builds of the application which support different platforms. This should include building support 

for a variety of VR runtimes into the application and creating multiple versions of the application 

for different operating systems and 3D APIs. Carrying out this kind of preparatory work allows 

us much more flexibility in recreating a suitable execution environment in the future by 

maximising the ways in which a functional system could be pieced together. If an open 

standard for VR runtimes such as OpenXR is widely adopted, building support for such a 

standard into VR applications may greatly ease the process of hardware migration. 

Theoretically, it might be possible to run older VR applications built with OpenXR support on 

any contemporary VR hardware supporting the standard, providing backwards compatibility 

with earlier versions of the standard is maintained. Whether backwards compatibility will be 

maintained is uncertain, as we do not know if the maintainers of OpenXR, the Khronos Group, 

see this as a priority.  

 

3D engines and VR hardware are both unlikely to be created by artists themselves, therefore 

control over the availability of OpenXR to artists lies with the companies that create these 
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technologies. Although signs of industry investment and adoption are promising, we cannot 

be certain as to the extent to which this standard will be adopted or supported by software and 

hardware. There are also good reasons to treat industry investment in open standards with 

some skepticism, as priorities are known to change. As noted in 2.2.3. 3D APIs, Apple have 

recently decided to deprecate their OpenGL implementation on MacOS in favour of their own 

proprietary Metal API. OpenXR is a consortium largely made up of industry partners with paid 

for representation, though tiers of membership are available, and representation of cultural 

heritage institutions has been discussed in outline.  

 

While use of open standards such as OpenXR has clear advantages for maintaining access 

to VR artworks in the short term, their longer-term benefits may be limited by other factors 

affecting the feasibility of hardware migration. For example, significant changes in prevalent 

CPU architectures, operating systems and 3D APIs will also affect the viability of running older 

VR applications on contemporary computers. We must therefore consider the possibility of 

more significant interventions in the future, such as emulation and code intervention, which 

we consider in turn in the following sections. 

 

5.4. Emulation and Related Approaches 
 

Emulation and related approaches are preservation strategies which make use of software to 

allow one computer system to behave as if it were a different computer system. This allows 

us to run unmodified software (e.g. a VR application or 360 video player) on computer 

hardware which it was not designed to run on. Within this category of approach we include not 

only emulation and virtualisation, but also related tools like compatibility layers and wrappers. 

These can be contrasted with code migration and related approaches, which are preservation 

strategies that make changes to the software itself through the modification or rewriting of 

code. These are discussed further in the subsequent section. 

 

Emulation relies on the use of tools which recreate a particular set of hardware (the most 

important of which is the CPU) in software. For long-term preservation purposes, this allows 

a software environment (e.g. a disk image) to be separated from obsolete physical hardware 

and accessed through emulated hardware on a contemporary computer system. Related to 

emulation is virtualization, which involves many of the same principles but additionally allows 

the guest (i.e. the emulated machine) access to some physical hardware on the host machine, 

which improves performance. Emulation and virtualization have demonstrated uses in the 

conservation79,80 of software-based art and use of emulators is common in the care of 

software-based artworks at Tate. We might therefore expect these approaches to be 

applicable to VR artworks too. They can be seen as a first logical step for treatment, as in 

comparison to the more involved work of code migration, they can be carried out without 

source code access or developer time. 

 
79 Klaus Rechert, Patricia Falcão and Tom Ensom, Introduction to an Emulation-Based Preservation 

Strategy for Software-Based Artworks, 2016,  http://www.tate.org.uk/research/publications/emulation-
based-preservation-strategy-for-software-based-artworks. 
80 Patricia Falcão, Ashe Alistair, and Brian Jones, Virtualisation as a Tool for the Conservation of 

Software-Based Artworks, at iPRES 2014, 
https://www.academia.edu/12462584/Virtualisation_as_a_Tool_for_the_Conservation_of_Software-
Based_Artworks. 

http://www.tate.org.uk/research/publications/emulation-based-preservation-strategy-for-software-based-artworks
http://www.tate.org.uk/research/publications/emulation-based-preservation-strategy-for-software-based-artworks
https://www.academia.edu/12462584/Virtualisation_as_a_Tool_for_the_Conservation_of_Software-Based_Artworks
https://www.academia.edu/12462584/Virtualisation_as_a_Tool_for_the_Conservation_of_Software-Based_Artworks
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At time of writing, full system emulation does not appear to be a feasible strategy for preserving 

virtual reality artworks. This stems from limitations in emulated hardware performance and 

functionality. Emulators rely on virtual CPU and GPU hardware, which recreates or 

approximates physical graphics hardware in software which can execute the necessary code. 

However, due to the overhead of executing this code in software, virtual hardware tends to be 

much less powerful than its physical counterpart, resulting in performance problems when 

running applications with high performance requirements — such as VR applications. At time 

of writing, the emulated GPUs we examined (including those packaged with QEMU, VirtualBox 

and VMware) do not offer sufficient 3D rendering capabilities to run virtual reality artworks at 

required speeds (or at all, in some cases). Furthermore, the current generation of VR runtimes 

require access to a physical GPU in order to access an HMD in direct mode. A workaround 

for this is to allow the emulated environment a level of access to a physical graphics card via 

techniques called paravirtualization and passthrough. However, these techniques still rely on 

physical hardware and associated drivers, thus limiting the value of the resulting emulated 

machine for preservation purposes. Time will tell whether or not emulation will become suitable 

for running the VR applications of our current time. Given trends in computing, it seems likely 

that this may eventually be so, but remains contingent on sufficient interest from enthusiast 

communities or industry to create suitable emulators. 

 

The use of compatibility layers and similar tools offers an alternative to full system emulation 

with short-term relevance to the preservation of VR artworks. Compatibility layers and 

wrappers translate system or API calls made by a program to another system or API. By virtue 

of shared processor architectures (most contemporary desktop computing software is 

compiled for x86-64 processors) a program built for one operating system can be executed on 

another operating with minimal performance overhead, as any native code can be run on the 

CPU as-is. However, system and API calls are usually specific to the operating system on 

which they were built to run. For example, Wine81 allows the execution of software designed 

for modern Windows operating systems on modern Linux operating systems (including 

applications which require the use of the Direct3D API) by translating system calls from one 

platform to another. While the dependency on a specific processor architecture remains, tools 

such as Wine do have the potential to at least slow obsolescence by allowing software to be 

run on a wider variety of software environments.  

 

Compatibility layers have also been developed to allow the use of applications designed for 

one VR hardware set with another. For example, Revive82 allows Oculus-targeting applications 

to be used with HTC Vive hardware, while OpenOVR83 allows the inverse for SteamVR 

targeting applications. Whether similar tools will emerge to support legacy VR applications on 

future platforms is unknown, but given the level of interest in VR from the gaming community 

it’s easy to imagine retrogaming enthusiasts taking on this kind of challenge — particularly 

with the financial support of cultural heritage institutions. The use of proprietary technologies 

will slow progress in this area, as they require time-consuming reverse engineering work to 

make sense of. This gives further support to the notion that we should favour open standards 

where possible. Again, use of OpenXR would provide a significant advantage here as an open 

 
81 Wine, WineHQ web page, n.d., https://www.winehq.org/. 
82 LibreVR, Revive, GitHub repository, 2020, https://github.com/LibreVR/Revive. 
83 Campbell Suter, OpenComposite GitLab repository, 2020, https://gitlab.com/znixian/OpenOVR. 

https://www.winehq.org/
https://github.com/LibreVR/Revive
https://gitlab.com/znixian/OpenOVR
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standard: a specification of the standard is publicly available, which theoretically allows 

compatibility software to be written in compliance with the standard that can then communicate 

with any other software that is compliant. 

 

While it is impossible to predict whether or not the emulation approaches discussed in this 

section will be available to us in the future to apply to VR applications, there are important 

steps we can take now to prepare for the eventuality that they are. One of these is to, as 

described in 5.1.1. Acquiring Real-Time 3D VR Artworks, create raw disk images of the 

storage media of artist-verified and tested computer systems. Disk images can then be used 

as the basis of emulation efforts, without the need to reconstruct a suitable software 

environment from scratch in the future — something which is likely to be very challenging due 

to the large number of components involved and their delivery through internet-connected 

installers. To supplement imaging and ensure we can define suitable virtual hardware in the 

future, the hardware of the physical computer system should be carefully documented. Finally 

we should continue to advocate for the use of open standards in the development of VR 

systems where possible, including supporting artists in the creation of new software builds if 

necessary. Where proprietary technologies are unavoidable, we can try and advocate for 

greater openness within the industry and ensure that legal provisions better protect those 

having to bypass copyright protections in order to support legacy access to software. 

Practitioners in the United States have had success developing best practices for applying the 

fair use84 right to digital preservation and a flexible exemption that favors public interest uses85. 

They have also obtained regulatory relief, such as the recent DMCA copyright exemptions 

adopted by the US Copyright Office86.  

 

5.5. Code Migration and Related Approaches  
 

Code migration and related approaches are preservation strategies that make changes to 

software (e.g. a VR application or 360 video player) through the modification or rewriting of 

code, so that it remains accessible in changing technical environments. There are many 

different ways we could apply this approach to VR artworks, varying in the extent to which 

original source code is altered and the frequency with which changes would be made. In this 

section, we consider the hypothetical application of code migration to a VR application built in 

a game engine. It is important to note this approach is contingent on access to production 

materials, including at least the engine project and assets, and engine binaries of the 

appropriate version with which to open it. The challenges involved in acquiring these are 

discussed further in 5.1.1. Acquiring Real-Time 3D VR Artworks, where we propose that disk 

imaging offers a particularly useful tool. 

 
84 Brandon Butler, Law & Policy Advisor for the Software Preservation Network, noted in a comment on 

an early draft of this report that fair use exists in several legal regimes outside the US, but countries 
without fair use (including many countries with ‘fair dealing’ provisions, such as the UK) should explore 
what other provisions in their law can support software preservation or consider advocacy for their 
adoption. 
85 Software Preservation Network, Code of Best Practices for Fair Use in Software Preservation, n.d., 

https://www.softwarepreservationnetwork.org/project/code-of-best-practices-for-fair-use/.  
86 Kendra Albert and Kee Young Lee, A Preservationists Guide to the DMCA Exemption for Software 

Preservation, 2018, https://www.softwarepreservationnetwork.org/a-preservationists-guide-to-the-
dmca-exemption-for-software-preservation/.  

https://www.softwarepreservationnetwork.org/project/code-of-best-practices-for-fair-use/
https://www.softwarepreservationnetwork.org/a-preservationists-guide-to-the-dmca-exemption-for-software-preservation/
https://www.softwarepreservationnetwork.org/a-preservationists-guide-to-the-dmca-exemption-for-software-preservation/
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A use of code migration with short-term value would be to add interoperability to an existing 

VR application. This could involve adding support for a new VR runtime by installing an 

additional plugin (or adding equivalent code) or creating a new application build targeting a 

different operating system. In the short term this may be an effective way of opening up more 

hardware migration options, but is limited by the lack of long-term support for specific engine 

versions. As discussed in 3.1.1. Engines and Project Files, new engine versions are released 

multiple times per year, superseding older versions which eventually become publicly 

inaccessible. This points to a need to migrate between engine versions, an approach we call 

incremental migration. This frames the process of code migration as something occurring in 

small steps which, given the frequency of engine version releases, would be undertaken as a 

regular maintenance activity. This diverges from typical approaches to time-based media 

conservation where intervention happens infrequently, often at moments associated with 

significant events in the life of the artwork such as acquisition or display. As we are not aware 

of any examples of this kind approach being applied in the field, drawing any conclusions as 

to its viability is difficult. Further research is required to determine whether a reframing of 

migration as maintenance would be practical or desirable in the cultural heritage sector, given 

the resources it would entail.  

 

Assuming incremental migration is not a practical approach, what would be the impact of less 

frequent interventions on the viability of code migration? In these cases, it is likely that more 

extensive modification of the underlying code would be required. While this has been 

demonstrated as a viable approach in the conservation of software-based art87,8889, when 

considered in the context of VR applications (and other real-time 3D software produced using 

engines) additional complications arise. The first issue is access and rights regarding the use 

of engine source code, which would be required for this kind of approach. As discussed in 

3.1.1. Engines and Project Files, the full Unity source code is not accessible or modifiable 

without negotiation of a licence. Unreal Engine 4 has publicly accessible source code, with 

relatively permissive licence conditions, but restricts redistribution of source code. For Unreal 

Engine 4 then, at least, this level of access and rights would likely be sufficient to carry out 

any code migration work in order to maintain access. For Unity this is less clear, as we do not 

know how sympathetic the company would be to requests for access and rights from the 

cultural heritage sector.  

 

Assuming the necessary source code access and modification rights can be gained, we are 

presented with a secondary issue in the feasibility of carrying out modifications or rewrites.  

Modern game engines such as Unity and Unreal Engine are complex and sizeable pieces of 

software, developed by large teams over many years. What level of effort would be required 

to modify or rewrite the code base behind such an engine, in order to get it running in a different 

technical environment? Would an organisation working in the cultural heritage sector have 

 
87 Deena Engel and Glenn Wharton, Reading between the Lines: Source Code Documentation as a 

Conservation Strategy for Software-Based Art, Studies in Conservation 59 (6): 404–15, 2014, 
https://doi.org/10.1179/2047058413Y.0000000115. 
88 Deena Engel and Joanna Phillips, ‘Introducing ‘Code Resituation’: Applying the Concept of Minimal 

Intervention to the Conservation Treatment of Software-based Art’, Electronic Media Review 5, 2018, 
https://resources.culturalheritage.org/emg-review/volume-5-2017-2018/engel-2/. 
89 Mark Hellar, The Artist and the Technologist, 2019, https://journal.voca.network/the-artist-and-the-

technologist/  

https://doi.org/10.1179/2047058413Y.0000000115
https://resources.culturalheritage.org/emg-review/volume-5-2017-2018/engel-2/
https://journal.voca.network/the-artist-and-the-technologist/
https://journal.voca.network/the-artist-and-the-technologist/
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access to the resources that would be required to carry out such a task? Without case studies 

from the field of time-based media conservation, we can instead look for insights in other fields. 

In the video game industry the process of porting — a term essentially analogous to code 

migration — is a common activity in the development of video games. This is a useful 

reference point as video games use the same real-time 3D technologies that VR artworks 

employ. Within the industry, porting is often handled by specialist studios. There are relatively 

few examples of the details of this work being discussed in public forums, but insights from 

porting studio indicate that this is a complex and time-consuming process9091. Both articles 

touch on ways in which changes to a game can be wrought by the process of porting, with 

Frank Cifaldi arguing in the latter that, "with all the moving parts involved in engineering for 

specific platforms it’s I would say impossible to exactly replicate." This is a significant concern 

in an art conservation context, where issues of authenticity and the potential loss of work-

defining characteristics are important considerations.  

 

If engine source code is not available, we might consider migration as theoretically viable 

between game engines, a process which would involve asset or scene migration and manual 

reconstruction of other dynamic elements such as scripting and custom programming or 

plugins. There are many potential pitfalls to this process, however. The first is that it is reliant 

on being able to export assets in a suitable format and without loss of any of their properties. 

Further research is required to understand how feasible this is, but there may be benefits to 

preserving assets independently of the engines they were created in — a significant challenge 

given the number of formats and tools involved in these workflows. It is also likely to be limited 

to those assets (or scene components more generally) which are exportable at all. Some, such 

as particle systems, lights and components using custom code, will need to be manually 

reconstructed in the new engine as they cannot be exported to an interchange format. Whether 

this might result in loss of important characteristics is uncertain without further research, and 

dependent on the design of future game engines. Even in the best-case scenario that assets 

can be migrated, features built into the new engine may not match those of the original engine. 

For example, the implementation of material shaders may differ, resulting in changes to 

characteristics of the rendered image. Again, this is not something we can hope to fully 

understand at this time; there are no case studies that we are aware of and we cannot predict 

the future development of real-time 3D software.  

 

As this discussion has highlighted, there is a great deal we don’t yet understand about code 

migration’s potential uses in preserving VR artworks. However, there are certain essential 

steps that can be taken now to prepare for the possibility of code migration. The most important 

of these is to ensure that production materials are acquired where possible, and that efforts 

are made to gather all the third-party dependencies required to open and compile these source 

projects. As discussed in 5.1.1. Acquiring Real-Time 3D VR Artworks, disk imaging appears 

to offer a suitable solution to capturing production environments, with some caveats. Where 

only the source project is acquired, future access to this will be contingent on access to engine 

binaries and other third-party software. This points to a need for this kind of software to be 

 
90 Alex Wawro, What exactly goes into porting a video game? BlitWorks explains, 2014, 

https://www.gamasutra.com/view/news/222363/What_exactly_goes_into_porting_a_video_game_Blit
Works_explains.php. 
91 Tom Bennet, Bridging the generation gap: Porting games to new platforms, 2015, 

https://www.polygon.com/features/2015/11/30/9790028/video-game-ports-remasters-the-last-of-us.  

https://www.gamasutra.com/view/news/222363/What_exactly_goes_into_porting_a_video_game_BlitWorks_explains.php
https://www.gamasutra.com/view/news/222363/What_exactly_goes_into_porting_a_video_game_BlitWorks_explains.php
https://www.polygon.com/features/2015/11/30/9790028/video-game-ports-remasters-the-last-of-us
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preserved and access to it maintained, be it by its manufacturers or an independent body. 

While this work may be occuring within the industry, this is not clear from available information. 

What a body outside of the industry might look like, or whether it might already exist is also 

unclear and requires further collaboration within the cultural heritage sector to determine. For 

now, the feasibility of code migration as a preservation strategy for VR artworks remains 

difficult to meaningfully assess. It offers a rich area for future research however, and case 

studies testing the viability of the process would be particularly valuable. One potentially 

interesting approach would be to explore artworks produced for older VR technologies from 

the 1990s as case studies for migration to current generation hardware. 
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6. Summary and Recommendations 
 

In Section 2 we identified the key components of a VR system and their complex 

interdependencies. We ascertained how variance in the characteristics of a VR artwork might 

occur through the use of different hardware and software components. Due to the rapidly 

evolving commercial landscape of VR manufacturing, hardware components are at high risk 

of obsolescence, threatening the sustainability of VR systems. This is exacerbated by a lack 

of standardisation in VR runtime software, which has a critical role in allowing access to VR 

hardware. We discussed how open standards in this area could provide potential for migration 

in the future, particularly the OpenXR specification.  

 

In Section 3 we examined the production environments in which RT3D artworks are created. 

We highlighted their reliance on game engine technologies and the difficulty of accessing 

legacy versions of these. We identified long-term access to source materials as a potential 

challenge for preservation, particularly due to restrictive access conditions for engine source 

code. Later in Section 5, we discussed an approach to capturing production environments 

using disk imaging, although this requires further practical case studies to fully understand the 

implications of creating and managing these. We found that compiled VR applications can be 

acquired using a similar approach to other real-time 3D software, although careful verification 

of rendering and performance characteristics is required during playback. Finally, we briefly 

explored approaches to the documentation of real-time 3D VR, focusing on our own 

acquisition information gathering template and video capture as key topics for future research.  

 

In Section 4 we explore how 360 video can be generated in monoscopic or stereoscopic 

formats from a variety of camera types and layouts. The process of making this raw footage 

viewable through stitching is examined, along with the implications for preservation. Two 

popular projection formats are looked at in detail and it is acknowledged that there is likely to 

be development in projection format types, driven in part by the popularity of streaming 360 

video. We then examine the audio components of 360 video and highlight different file 

conventions that could cause discrepancies in playback. Due to the many permutations of 

projection type and audio conventions, we highlight the importance of metadata accuracy for 

preservation. Briefly, we explore the generation of depth maps that enable 360 video to have 

a sense of movement that mimics the 6DoF afforded by RT3D. We note that the development 

of depth maps in 360 video potentially has computational requirements similar to RT3D 

processing.  

 

In Section 5 we discussed the feasibility of applying existing acquisition workflows and 

preservation strategies to VR artworks as a way of managing change. We proposed that real-

time 3D VR can benefit from the use of approaches to acquisition used for other forms of 

software-based art, such as sourcing duplicate hardware and creating disk images. Benefits 

and challenges to acquiring source materials and generating multiple builds were also 

discussed. 360 video was found to have many similarities to other forms of digital video, 

although extra care is required to ensure that the most appropriate masters are sourced and 

that metadata is appropriately captured.  

 

We also discussed the potential feasibility of several treatment approaches for real-time 3D 

VR artworks. Stockpiling hardware is unlikely to offer a feasible strategy, particularly given 
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uncertainties around access to networks required for ongoing maintenance and repair. If like-

for-like replacement of hardware becomes impossible, we will be relying on approaches which 

are currently uncertain and untested. The usefulness of hardware migration is likely to be 

limited by adoption of open standards for XR runtimes in the short-term, and then eventually 

by the obsolescence of other software environment components (e.g. operating system and 

drivers) on which the target VR application depends. We noted that it is also likely to change 

characteristics of the artwork. The usefulness of emulation is limited by lack of support for XR 

and 3D rendering in emulation tools in current tools. Code migration presents the most 

uncertainties of all the strategies, given the lack of precedent in art conservation for migrating 

real-time 3D software to new engines. We proposed incremental migration to new engine 

versions as one treatment approach with short-term use. 

 

We conclude this report by offering a set of recommendations for artists and institutions who 

are dealing with the immediate problem of caring from VR artworks. These strategies are 

based on a set of case studies, development of established acquisition workflows and steps 

required to prepare for future preservation procedures. They represent a snapshot of our 

understanding of this topic at this time and we hope will be refined and built upon by others. 

With that in mind, we also provide a set of recommendations for future research topics in this 

area. 

 

  



 

54 

6.1. Recommendations for Artists 
 

For artists we recommend the following steps are taken as a short-term stabilisation strategy 

for the VR works they are caring for:  

● Ensure you have a complete offline VR system (including hardware and software) 

configured and correctly running on the target hardware. 

● Capture and archive a disk image(s) of the contents of the primary storage volumes of 

this computer system. 

● Ensure you have a duplicate backup of this system (including hardware and software). 

 

For VR artworks with a real-time 3D component, we recommend the following additional steps 

are taken: 

● Create software builds for as many suitable platforms as possible, test them and 

archive these with configuration instructions. 

● Maximise application support for a variety of VR hardware by using all suitable VR 

plugins and SDKs in the software builds created. 

● Carefully manage engine projects and assets so that they are contained within a single 

location, and retain an installer or package of the relevant engine version binaries. 

● Archive snapshot(s) of a production environment (typically consisting of at least 

configured game engine binaries and project files), ideally as a disk image. 

 

For VR artworks with a 360 video component, we recommend the following additional steps 

are taken: 

● Consider archiving raw camera output to allow footage to be re-stitched in higher 

resolution as technology progresses.  

● Consider archiving the complete production environment for re-export, ideally as a disk 

image. 

● In the case of works exported from RT3D engines, consider archiving the production 

environment, including project files and engine binaries, ideally as a disk image. 

● Ensure that the file metadata accurately describes all parameters such as projection 

format, distortion map and spatial audio conventions. If possible, test on a variety of 

players for consistency.  
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6.2. Recommendations for Collecting Institutions 
 

For collecting institutions, we recommend the following steps are taken as a short term 

stabilisation strategy for the VR works they are caring for:  

● Ensure you have a complete offline VR system (including hardware and software) 

configured and correctly running on the target hardware. 

● Capture and archive a disk image(s) of the contents of the primary storage volumes of 

this computer system. 

● Ensure you have a duplicate backup of this system (including hardware and software). 

 

For VR artworks with a real-time 3D software component, we recommend the following 

additional steps are taken: 

● Acquire or create software builds for as many suitable platforms as possible, test them 

and archive these with configuration instructions. 

● Maximise application support for a variety of VR hardware by using all suitable VR 

plugins and SDKs in the software builds created. 

● Acquire or recreate a production environment (typically consisting of at least configured 

game engine binaries and project files), verify it and archive as a disk image or 

component parts. 

 

For VR artworks with a 360 video component, we recommend the following additional steps 

are taken: 

● Attempt to play the video file on a variety of different software players and untethered 

headsets as reasonably possible, identifying any variances in audio or video.  

● Verify that the metadata correctly describes the projection format, distortion map, and 

spatial audio convention.  

● In the case of works captured from camera, consider archiving raw camera files to 

enable re-stitching at higher resolutions as technology progresses.  

● In the case of works exported from RT3D engines, consider archiving the production 

environment, including project files and engine binaries, ideally as a disk image. 

● Consider a regular maintenance task of playing the artwork on the latest generation of 

headset to identify potential change.  
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6.3. Recommendations for Further Work 
 

For VR artworks in general we have identified the following priorities for further work in this 

area: 

● Monitor development and support adoption of open standards for VR. 

● Development of a framework for gathering and interpreting artwork documentation, 

including external video capture, screen capture, artists description, narration etc.  

 

For real-time 3D VR artworks we have identified the following priorities for further work in this 

area: 

● Monitor development and support adoption of open standards for real-time 3D 

software. 

● Support further research into the practicality of maintenance as a preservation 

strategy, including how frequently maintenance would be required. 

● Support further research in understanding variability in real-time 3D rendering, and the 

effective documentation and management of performance and rendering 

characteristics. 

● Monitor and support the development of emulation and virtualization and their support 

real-time 3D rendering. 

● Support further research into 3D formats for stabilising 3D model assets. 

● Support further research into better understanding how to effectively capture fixed-

view and 360 video from real-time 3D VR artworks. 

 

For 360 video we have identified the following priorities for further work in this area: 

● Monitor the evolution of metadata standards and their adoption.  

● Monitor the evolution of projection formats and the implications for player compatibility 

and sustainability. 

● Monitor the evolution of tools that generate depth or 6DoF information from 

stereoscopic 360 video and consider the implications for future playback.  

● Monitor the evolution of volumetric video capture, and the increased dependency on 

real time rendering for its playback.  

● Monitor the evolution of 360 video file types and assess the suitability of media 

migration.  
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